一元二次方程的应用【5篇】

作为一位无私奉献的人民教师,总归要编写教案,借助教案可以让教学工作更科学化。怎样写教案才更能起到其作用呢?熟读唐诗三百首,不会作诗也会吟,该页是编辑给大伙儿整编的一元二次方程的应用【5篇】。

元二次方程的相关教案 篇1

【教学目标】

知识与技能:探索一元二次方程及其相关概念,能够辨别各项系数;能够从实际问题中抽象出方程知识.

过程与方法:在探索问题的过程中使学生感受方程是刻画现实世界的一个模型,体会方程与实际生活的联系.

情感态度:通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.

【教学重点】

一元二次方程的概念。

【教学难点】

如何把实际问题转化为数学方程。

【教学过程】

一、情景导入,初步认知

问题1:已知一矩形的长为200c,宽150c.在它的中间挖一个圆,使剩余部分的面积为原矩形面积的34,求挖去的圆的半径xc应满足的`方程。(π取3)问题2:据某市交通部门统计,前年该市汽车拥有量为75万辆,两年后增加到108万辆,求该市两年来汽车拥有量的年平均增长率x应满足的方程。你能列出相应的方程吗?

【教学说明】为学生创设了一个回忆、思考的情境,又是本课一种很自然的引入,为本课的探究活动做好铺垫.

二、思考探究,获取新知

1.对于问题1:找等量关系:矩形的面积—圆的面积=矩形的面积×3/4

列出方程:200×150-3x2=200×150×3/4 ①

对于问题2:

等量关系:两年后的汽车拥有量=前年的汽车拥有量×(1+年平均增长率)2

列出方程:75(1+x)2=1082 ②

2.能把①,②化成右边为0,而左边是只含有一个未知数的二次多项式的形式吗?让学生展开讨论,并引导学生把①,②化成下列形式:

①化简,整理得x2-2500=0 ③

②化简,整理得25x2+50x-11=0 ④

3.讨论:方程③、④中的未知数的个数和次数各是多少?

【教学说明】分组合作、小组讨论,经过讨论后交流小组的结论,可以发现上述方程都不是所学过的方程,特点是两边都是整式,且整式的最高次数是2次。

【归纳结论】如果一个方程通过移项可以使右边为0,而左边是只含有一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是:ax2+bx+c=0,(a,b,c是常数且a≠0),其中a,b,c分别叫作二次项系数、一次项系数、常数项。

4.让学生指出方程③,④中的二次项系数、一次项系数和常数项。

【教学说明】让学生充分感受所列方程的特点,再通过类比的方法得到定义,从而达到真正理解定义的目的。

三、运用新知,深化理解

1.见教材P27例题。

2.下列方程是一元二次方程的有。

【答案】 (5)

3.已知(+3)x2-3x-1=0是一元二方程,则的取值范围是_____.

分析 :一元二次方程二次项的系数不等于零。故≠-3.

【答案】 ≠-3

4.把方程(1-3x)(x+3)=2x2+1化为一元二次方程的一般形式,并写出二次项,二次项系数,一次项,一次项系数及常数项。

解 :原方程化为一般形式是:5x2+8x-2=0(若写成-5x2-8x+2=0,则不符合人们的习惯),其中二次项是5x2,二次项系数是5,一次项是8x,一次项系数是8,常数项是-2(因为一元二次方程的一般形式是三个单项式的和,所以不能漏写单项式系数的负号).

5.关于x方程x2-3x=x2-x+2是一元二次方程,应满足什么条件?

分析 :先把这个方程变为一般形式,只要二次项的系数不为0即可。

解 :由x2-3x=x2-x+2得到(-1)x2+(-3)x-2=0,所以-1≠0,

即≠1.所以关于x的方程x2-3x=x2-x+2是一元二次方程,应满足≠1.

6.一元二次方程(x+1)2-x=3(x2-2)化成一般形式是。

分析: 一元二次方程一般形式是ax2+bx+c=0(a≠0),对照一般形式可先去括号,再移项,合并同类项,得2x2-x-7=0.

【答案】 2x2-x-7=0

7.把方程-5x2+6x+3=0的二次项系数化为1,方程可变为( )

A.x2+6/5x+3/5=0 B.x2-6x-3=0

C.x2-6/5x-3/5=0 D.x2-6/5x+3/5=0

【答案】 C

注意方程两边除以-5,另两项的符号同时发生变化。

8.已知方程(+2)x2+(+1)x-=0,当满足______时,它是一元一次方程;当满足______时,它是二元一次方程。

分析: 当+2=0,=-2时,方程是一元一次方程;当+2≠0,≠-2时,方程是二元一次方程。

【答案】 =-2≠-2

9.某型号的手机连续两次降价,每个售价由原来的1185元降到了580元,设平均每次降价的百分率为x,则列出方程为____________

【答案】 1185(1-x)2=580

10.当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0是一元二次方程?这时方程的二次项系数、一次项系数分别是什么?当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0是一元一次方程?

解:当a≠1时是一元二次方程,这时方程的二次项系数是a-1,一次项系数是-b;当a=1,b≠0时是一元一次方程。

【教学说明】这组练习目的在于巩固学生对一元二次方程定义中几个特征的理解。进一步巩固学生对一元二次方程的基本概念.

四、师生互动、课堂小结

先小组内交流收获和感想,而后以小组为单位派代表进行总结。教师作以补充。

【课后作业】布置作业:教材“习题2.1”中第1、2、6题。

【学反思】

本节课是一元二次方程的第一课时,通过对本节课的学习,学生将掌握一元二次方程的定义、一般形式、及有关概念,并学会利用方程解决实际问题。在教学过程中,注重重难点的体现。本节课内容对于学生整个中学阶段的数学学习有着重大的意义,能否学好关系到日后学习的成败,因此必须要让学生吃透内容并且要真正能消化。

初三上册数学教学工作计划 篇2

【学习目标】

1、了解整式方程和一元二次方程的概念 。

2、 知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

3、通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

【重点、难点】

重点:一元二次方程的概念和它的一般形式。

难点:对一元二次方程的一般形式的正确理解及其各项系数的确定

【学习过程】

一、

知识回顾

1、什么是整式方程?_什么是-元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程。就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做一元二次方程。

2、指出下列方程那些是一元二次方程:那些是一元一次方程?

(1) 3x十2=5x-3

(2) x2=4

(3) (x十3)(3xo4)=(x十2)2;

(4) (x-1)(x-2)=x2十8;

以上是 一元二次方程的为: ___________ 以上是 一元一次方程的为________

二、

探究新知[一]

1、一元二次方程的一般形式是( )

1)。提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠ 0 就成了一元一次方程了)

2)。方程中ax2、bx、c各项的名称及a、b的系数名称各是什么?

3)。强调:一元二次方程的一般形式中"="的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是"="的右边必须整理成0.

探究新知(二)

1、说出下列一元二次方程的二次项系数、一次项系数、常数项:

(1)x 2十3x十2=O ___________

(2)x 2-3x十4=0; __________

(3)3x 2-5=0 ____________

(4)4x 2十3x-2=0; _________

(5)3x 2-5=0; ________

(6)6x 2-x=0. _______

2、把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:

(1)6x -2=3-7x; (2)3x(x-1)=2(x十2)-4;

(3) (3x十2) 2=4(x-3) 2

[学以致用:]

强化概念:

1、 说出下列一元二次方程的二次项系数、一次项系数、常数项:

(1)x2十3x十2=O ______

(2)x2-3x十4=0;_______

(3) 3x2-5=0 _____________

(4)4x2十3x-2=0;____________

(5)3x2-5=0______________

(6)6x2-x=0________

2、把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:

(1)6x2=3-7x

(2)3x(x-1)=2(x十2)-4

(3)(3x十2)2=4(x-3)2

[知识总结:]

(1) 什么是一元二次方程?是一元二次方程满足哪几个条件?

(2) 要知道一元二次方程的一般形式{ax2十bx十c=0(a≠0)}并且注意一元二次方程的一般形式中"="的左边最多几项、其中( )可以不出现、但( )必须存在。特别注意的是"="的右边必须整理成( );

(3) 要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数。如:(3x十2) 2=4(x-3)____________

诊断检测题一:

1、一元二次方程的一般形式是_________,其中_____是二次项,____是一次项,_______是常数项。

2、方程(3x-7)(2x+4)=4化为一般形式为_____,其中二次项系数为_____,一次项系数为_______.

3、方程mx2+5x+n=0一定是( )。

A.一元二次方程 B.一元一次方程

C.整式方程 D.关于x的一元二次方程

4、关于x的方程(m+1)x2+2mx-3=0是一元二次方程,则m的取值范围是( )

A.任意实数 B. m≠-1 C. m>1 D. m>0

5、方程:3X-1=0;3X2-1=0;2X2-1=(X-1)(X-2);

3X2+Y=2X那些是一元二次方程?

6、把下列方程化成一般形式,且指出其二次项,一次项和常数项

(1)2x(x-5)=3-x (2) (2x-1)(x+5)=6x

诊断检测题二:

1、方程 的二次项系数是 ,一次项系数是 ,常数项是 。

2、把一元二次方程 化成二次项系数大于零的一般式是 ,其中二次项系数是 ,一次项的系数是 ,常数项是 ;

3、一元二次方程 的一个根是3,则 ;

4、 是实数,且 ,则 的值是 。

5、关于 的方程 是一元二次方程,则 。

6、方程:① ② ③ ④ 中一元二次程是 ( )

A. ①和② B. ②和③ C. ③和④ D. ①和③

元二次方程的应用 篇3

一、素质教育目标

(一)知识教学点:使学生会用列一元二次方程的方法解有关面积、体积方面的应用问题。

(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养用数学的意识。

二、教学重点、难点

1.教学重点:会用列一元二次方程的方法解有关面积、体积方面的应用题。

2.教学难点 :找等量关系。列一元二次方程解应用题时,应注意是方程的解,但不一定符合题意,因此求解后一定要检验,以确定适合题意的解。例如线段的长度不为负值,人的个数不能为分数等。

三、教学步骤

(一)明确目标。

(二)整体感知

(三)重点、难点的学习和目标完成过程

1.复习提问

(1)列方程解应用题的步骤?

(2)长方形的周长、面积?长方体的体积?

2.例1  现有长方形纸片一张,长19cm,宽15cm,需要剪去边长是多少的小正方形才能做成底面积为77cm2的无盖长方体型的纸盒?

解:设需要剪去的小正方形边长为xcm,则盒底面长方形的长为(19-2x)cm,宽为(15-2x)cm,

据题意:(19-2x)(15-2x)=77.

整理后,得x2-17x+52=0,

解得x1=4,x2=13.

∴  当x=13时,15-2x=-11(不合题意,舍去。)

答:截取的小正方形边长应为4cm,可制成符合要求的无盖盒子。

练习1.章节前引例。

学生笔答、板书、评价。

练习2.教材P.42中4.

学生笔答、板书、评价。

注意:全面积=各部分面积之和。

剩余面积=原面积-截取面积。

例2  要做一个容积为750cm3,高是6cm,底面的长比宽多5cm的长方形匣子,底面的长及宽应该各是多少(精确到0.1cm)?

分析:底面的长和宽均可用含未知数的代数式表示,则长×宽×高=体积,这样便可得到含有未知数的等式——方程。

解:长方体底面的宽为xcm,则长为(x+5)cm,

解:长方体底面的宽为xcm,则长为(x+5)cm,

据题意,6x(x+5)=750,

整理后,得x2+5x-125=0.

解这个方程x1=9.0,x2=-14.0(不合题意,舍去).

当x=9.0时,x+17=26.0,x+12=21.0.

答:可以选用宽为21cm,长为26cm的长方形铁皮。

教师引导,学生板书,笔答,评价。

(四)总结、扩展

1.有关面积和体积的应用题均可借助图示加以分析,便于理解题意,搞清已知量与未知量的相互关系。

2.要深刻理解题意中的已知条件,正确决定一元二次方程的取舍问题,例如线段的长不能为负。

3.进一步体会数字在实践中的应用,培养学生分析问题、解决问题的能力。

四、布置作业

教材P.42中A3、6、7.

教材P.41中3.4

五、板书设计

12.6  一元二次方程的应用(二)

例1.略

例2.略

解:设……… 解:…………

………… …………

元二次方程教案 篇4

学习目标

1.进一步理解方程是刻画客观世界的有效模型,

2.通过对实际问题的决实际问题的过程,知道解的一般步骤和关键所在

学习重点:认识不等式

学习难点:字语言转化为数学不等式

教学过程

一、情境引入:

围绕长方形公园的栅栏长280m.已知该公园的面积为4800m2. 求这个公园的长与宽。

二、探究学习:

1.尝试:

通常用一元一次方程解决实际问题要经历怎样的过程?

2.概括总结.

用方程解决实际问题的一般步骤为:找相等关系;设未知数,列方程,解方程,检验,答题。

3.典型例题:

例1、我社组团去龙湾风景区旅游,收费标准为:如果人数不超过30人,人均旅游费用为800元,如果人数多于30人,那么每增加1人,人均旅游费用降低10元,但人均旅游费用不得低于今为500元。

甲公司分批组织员工到龙湾风景区旅游,现计划用28000元组织第一批员工去旅游,问这次旅游可以安排多少人参加?

例2、建造一个池底为正方形、深度为2米的长方体无盖水池,池壁的造价为100元/平方米

池底的造价为200元/平方米,总造价为6400元,求正方形池底的长。

例3、两个连续奇数的积是323,求这两个数。

4.巩固练习:

(1)在三位数345中,3,4,5是这个三位数的什么?

(2)如果a ,b ,c 分别表示百位数字、十位数字、个位数字,这个三位数能不能写成abc形式?为什么?

(3)有一个两位数,它的两个数字之和是8,把这个两位数的数字交换位置后所得的数乘以原的数就得到1855,求原的两位数。

(4)已知两个数的和等于12,积等于32,则这两个是

(5)求 x:(x-1)=(x+2):3 中的x.

(6)三个连续整数两两相乘后,再求和,得362,求这三个数。

三、归纳总结:

1、列一元二次方程解决实际问题的一般步骤。

2、解的取舍情况。

4.3用一元二次方程解决问题( 1)

【课后作业】

班级 姓名 学号

1、某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,则这个百分数为 ( )

A、10% B、20% C、120% D、180%

2、若两个连续整数的积是56,则它们的和是 ( )

A、±15 B、15 C、-15 D、11

3、一种药品经过两次降价后,每盒的价格由原的60元降至48.6元,那么平均每次降价的百分率是 。

4、某地区开展“科技下乡”活动三年,接受科技培训的人员累计达95万人次,其中第一年培训了20万人次。设每年接受科技培训的人次的平均增长率都为x,根据题意列出的方程是___________。

5、西瓜经营户以2元/kg的价格购进一批小型西瓜,以3元/kg的价格出售,每天可售出200kg,为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0、1元/kg,每天可多售出40kg,另外,每天的房租等固定成本共24元,该经营户要想每天盈利润200元,应将每千克小型西瓜的售价降低多少元?

6、如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为a为15米),围成中间隔有一道篱笆的长方形花圃。

(1)如果要围成面积为45平方米的花圃,AB的长是多少米?

(2)能围成面积比45平方米更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由。

数学《一元二次不等式》教学设计 篇5

一、教材分析

(一)教材的地位和作用

“一元二次不等式解法”既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。

(二)教学内容

本节内容分2课时学习。本课时通过二次函数的图象探索一元二次不等式的解集。通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。

二、教学目标分析

根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为:

知识目标——理解“三个二次”的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。

能力目标——通过看图象找解集,培养学生“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力。

情感目标——创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。

三、重难点分析

一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。本节课的重点确定为:一元二次不等式的解法。

要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的难度。因此,本节课的难点确定为:“三个二次”的关系。要突破这个难点,让学生归纳“三个一次”的关系作铺垫。

四、教法与学法分析

(一)学法指导

教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。

(二)教法分析

本节课设计的指导思想是:现代认知心理学——建构主义学习理论。

建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。

本节课采用“诱思引探教学法”。把问题作为出发点,指导学生“画、看、说、用”。较好地探求一元二次不等式的解法。

五、课堂设计

本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。

(一)创设情景,引出“三个一次”的关系

本节课开始,先让学生解一元二次方程x2-x-6=0,如果我把“=”改成“”则变成一元二次不等式x2-x-60让学生解,学生肯定感到很突然。但是“思维往往是从惊奇和疑问开始”,这样直奔主题,目的在于构造悬念,激活学生的思维兴趣。

为此,我设计了以下几个问题:

1、请同学们解以下方程和不等式:

①2x-7=0;

②2x-70;

③2x-70

学生回答,我板书。

2、我指出:2x-70和2x-70的解实际上只需利用不等式基本性质就容易得到。

3、接着我提出:我们能否利用不等式的基本性质来解一元二次不等式呢?学生可能感到很困惑。

4、为此,我引入一次函数y=2x-7,借助动画从图象上直观认识方程和不等式的解,得出以下三组重要关系:

①2x-7=0的解恰是函数y=2x-7的图象与x轴

交点的横坐标。

②2x-70的解集正是函数y=2x-7的图象

在x轴的上方的点的横坐标的集合。

③2x-70的解集正是函数y=2x-7的图象

在x轴的下方的点的横坐标的集合。

三组关系的得出,实际上让学生找到了利用“一次函数的图象”来解一元一次方程和一元一次不等式的方法。让学生看到了解决一元二次不等式的希望,大大激发了学生解决新问题的兴趣。此时,学生很自然联想到利用函数y=x2-x-6的图象来求不等式x2-x-60的解集。

(二)比旧悟新,引出“三个二次”的关系

为此我引导学生作出函数y=x2-x-6的图象,按照“看一看 说一说 问一问”的思路进行探究。

看函数y=x2-x-6的图象并说出:

①方程x2-x-6=0的解是

x=-2或x=3 ;

②不等式x2-x-60的解集是

{x|x-2,或x3};

③不等式x2-x-60的解集是

{x|-23}。

此时,学生已经冲出了困惑,找到了利用二次函数的图象来解一元二次不等式的方法。

学生沉浸在成功的喜悦中,不妨趁热打铁问一问:如果把函数y=x2-x-6变为y=ax2+bx+c(a0),那么图象与x轴的位置关系又怎样呢?(学生回答:△0时,图象与x轴有两个交点;△=0时,图象与x轴只有一个交点;△0时,图象与x辆没有交点。)请同学们讨论:ax2+bx+c0与ax2+bx+c0的解集与函数y=ax2+bx+c的图象有怎样的关系?

(三)归纳提炼,得出“三个二次”的关系

1、引导学生根据图象与x轴的相对位置关系,写出相关不等式的解集。

2、此时提出:若a0时,怎样求解不等式ax2+bx+c0及ax2+bx+c0?(经讨论之后,有的学生得出:将二次项系数由负化正,转化为上述模式求解,教师应予以强调;也有的学生提出画出相应的二次函数图象,根据图象写出解集,教师应给予肯定。)

(四)应用新知,熟练掌握一元二次不等式的解集

借助二次函数的图象,得到一元二次不等式的解集,学生形成了感性认识,为巩固所学知识,我们一起来完成以下例题:

例1、解不等式2x2-3x-20

解:因为Δ0,方程2x2-3x-2=0的解是

x1= ,x2=2

所以,不等式的解集是

{ x| x ,或x2}

例1的解决达到了两个目的:一是巩固了一元二次不等式解集的应用;二是规范了一元二次不等式的解题格式。

下面我们接着学习课本例2。

例2 解不等式-3x2+6x2

课本例2的出现恰当好处,一方面突出了“对于二次项系数是负数(即a0)的一元二次不等式,可以先把二次项系数化为正数,再求解”;另一方面,学生对此例的解答极易出现写错解集(如出现“或”与“且”的错误)。

通过例1、例2的解决,学生与我一起总结了解一元二次不等式的一般步骤:一化正—二算△—三求根—四写解集。

例3 解不等式4x2-4x+10

例4 解不等式-x2+2x-30

分别突出了“△=0”、“△0”对不等式解集的影响。这两例由学生练习,教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予热情表扬。

4道例题,具有典型性、层次性和学生的可接受性。为了避免学生学后“一团乱麻”、“一盘散沙”的局面,我和学生一起总结。

(五)总结

解一元二次不等式的“四部曲”:

(1)把二次项的系数化为正数

(2)计算判别式Δ

(3)解对应的一元二次方程

(4)根据一元二次方程的根,结合图像(或口诀),写出不等式的解集。概括为:一化正→二算Δ→三求根→四写解集

(六)作业布置

为了使所有学生巩固所学知识,我布置了“必做题”;又为学有余力者留有自由发展的空间,我布置了“探究题”。

(1)必做题:习题1.5的1、3题

(2)探究题:

①若a、b不同时为零,记ax2+bx+c=0的解集为P,ax2+bx+c0的解集为M,ax2+bx+c0的解集为N,那么P∪M∪N=______________;

②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是R,求实数k的取值范围。

(七)板书设计

一元二次不等式解法(1)

五、教学效果评价

本节课立足课本,着力挖掘,设计合理,层次分明。以“三个一次关系→三个二次关系→一元二次不等式解法”为主线,以“从形到数,从具体到抽象,从特殊到一般”为灵魂,以“画、看、说、用”为特色,把握重点,突破难点。在教学思想上既注重知识形成过程的教学,还特别突出学生学习方法的指导,探究能力的训练,创新精神的培养,引导学生发现数学的美,体验求知的乐趣。

一键复制全文保存为WORD
相关文章