《因数倍数》教案【优秀8篇】

在教学工作者实际的教学活动中,常常要写一份优秀的教案,教案有助于顺利而有效地开展教学活动。优秀的教案都具备一些什么特点呢?

因数与倍数教案 篇1

教学目标:

1、学生掌握找一个数的因数,倍数的方法;

2、学生能了解一个数的因数是有限的,倍数是无限的;

3、能熟练地找一个数的因数和倍数;

4、培养学生的观察能力。

教学重点:

熟练掌握找一个数的因数和倍数的方法。

教学难点:

能够熟练地找一个数的因数和倍数。

教学过程:

一、引入新课。

1、出示主题图,让学生各列一道乘法算式。

2、师:看你能不能读懂下面的算式?

出示:因为2×6=12

所以2是12的因数,6也是12的因数;

12是2的倍数,12也是6的倍数。

3、师:你能不能用同样的方法说说另一道算式?

(指名生说一说)

师:你有没有明白因数和倍数的关系了?

那你还能找出12的其他因数吗?

4、你能不能写一个算式来考考同桌?学生写算式。

师:谁来出一个算式考考全班同学?

5、师:今天我们就来学习因数和倍数。(出示课题:因数倍数)

齐读p12的注意。

二、新授

(一)找因数

1、出示例1:18的因数有哪几个?

从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?

学生尝试完成:汇报

(18的因数有:1,2,3,6,9,18)

师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)

师:18的因数中,最小的是几?的是几?我们在写的时候一般都是从小到大排列的。

2、用这样的方法,请你再找一找36的因数有那些?

汇报36的因数有:1,2,3,4,6,9,12,18,36

师:你是怎么找的。?

举错例(1,2,3,4,6,6,9,12,18,36)

师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

仔细看看,36的因数中,最小的是几,的是几?

看来,任何一个数的因数,最小的一定是(),而的一定是()。

3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自己的练习本上写一写,然后汇报。

4、其实写一个数的因数除了这样写以外,还可以用集合表示:如

18的因数

1、2、3、6、9、18

小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

(二)找倍数

1、我们一起找到了18的因数,那2的倍数你能找出来吗?

汇报:2、4、6、8、10、16、……

师:为什么找不完?

你是怎么找到这些倍数的?(生:只要用2去乘1、乘2、乘3、乘4、…)

那么2的倍数最小是几?的你能找到吗?

2、让学生完成做一做1、2小题:找3和5的倍数。

汇报3的倍数有:3,6,9,12

师:这样写可以吗?为什么?应该怎么改呢?

改写成:3的倍数有:3,6,9,12,……

你是怎么找的?(用3分别乘以1,2,3,……倍)

5的倍数有:5,10,15,20,……

师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示

2的倍数3的倍数5的倍数

2、4、6、8…… 3、6、9…… 5、10、15……

师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?

(一个数的倍数的个数是无限的,最小的倍数是它本身,没有的倍数)

三、课堂小结

我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

四、独立作业

完成练习二1~4题

《因数与倍数》小学教案 篇2

教学目标:

1.学生通过回忆和整理,进一步明确因数和倍数的相关知识,加深认识相关概念之间的联系与区别,能求两个数的公因数和公倍数,并能运用这些知识解决相关实际问题。

2.学生在应用相关知识进行判断和推理的过程中,能说明思考过程,进一步培养归纳概括和演绎推理等思维能力,进一步增强分析问题和解决问题的能力。

3.学生进一步体会数学知识之间的内在联系,感受数学思考的严谨性和数学结论的确定性,激发学习数学的兴趣和学好数学的自信心。

教学重点:

掌握倍数和因数等相关概念,以及应用概念判断、推理。

教学难点:

理解相关概念的联系和区别。

教学过程:

一、揭示课题

1.回顾知识。

提问:上节课,我们已经复习了整数和小数的有关知识。

在整数知识里,我们还学习了因数和倍数,谁能来说说你是怎样理解因数和倍数的?一个数的因数和倍数各有什么特点?

结合学生交流,板书。

2.揭示课题。

引入:这节课,我们复习因数和倍数的相关知识。

通过复习,能进一步了解关于因数和倍数的知识,理解它们之间的联系和区别,并能应用这些知识。

二、基本练习

1.知识梳理。

提高:回想一下,在学习因数和倍数时,我们还学习了哪些相关的知识?

学生回顾,交流,教师适当引导回顾。

提问:2、5、3的倍数各有什么特征?什么叫奇数,什么叫偶像?什么叫质数,什么叫合数?什么叫公因数和最大公因数?什么叫公倍数和最小公倍数?

根据学生回答,板书整理。

2.做练习与实践第10题。

学生独立完成,指名板演。

集体交流,让学生说说找一个数的因数和倍数的方法。

3.做练习与实践第11题。

出示题目,学生直接口答。

提问:怎样判断一个数是不是2的倍数?判断是3和5的倍数呢?

追问:这里哪些是偶数,哪些是奇数?说说你是怎样想的。

4.做练习与实践第12题。

学生先独立写出质数和合数,再指名口答。

追问:最小质数是几?最小的合数呢?

《因数和倍数》数学教案 篇3

课前准备

教师准备 多媒体课件

学生准备 100以内的数表

教学过程

⊙谈话引入,揭示目标

师:上节课我们把数进行了分类整理,这节课我们就一起来复习因数和倍数的相关知识。

⊙回顾与整理

1.回顾旧知,构建知识网络。

(1)回顾:因数和倍数这部分知识有哪些概念?

(因数、倍数、质数、合数、奇数、偶数等)

(2)讨论:各概念之间的关系是怎样的?

(组内交流)

(3)梳理:小组合作,用自己喜欢的方法进行知识梳理。

(4)汇报:各自的知识梳理方法。

(课件展示学生的梳理方法,肯定其优点后,引导其完善树状知识网络图)

2.复习、理解相关概念。

(1)因数和倍数。

①在数学上,关于“因数”和“倍数”是怎么定义的?

[整数A除以整数B(B≠0),除得的商是整数且没有余数,我们就说整数A能被整数B整除,或者说整数B能整除整数A。

如果整数A能被整数B(B≠0)整除,整数A就叫作整数B的倍数,整数B就叫作整数A的因数。倍数和因数是相互依存的。

如45能被9整除,所以45是9的倍数,9是45的因数]

师:为了方便,在研究因数和倍数时,所说的数指的是非零整数。

②举例说明因数和倍数各有什么特征。

预设

生1:一个数的因数的个数是有限的,其中最小的是1,最大的是它本身。如20的因数有1,2,4,5,10,20。共6个。

生2:一个数的倍数的个数是无限的,其中最小的是它本身,没有最大的倍数。如4的倍数有4,8,12,…

生3:一个数最大的因数等于它最小的倍数。

……

(2)质数与合数。

根据一个数所含因数的个数的不同,还可以得到质数与合数的概念。

①什么是质数?最小的质数是什么?

[一个数,如果只有1和它本身两个因数,这样的数叫作质数(或素数),最小的质数是2]

②什么是合数?最小的合数是什么?

(一个数,如果除了1和它本身还有别的因数,这样的数叫作合数,最小的合数是4)

(3)公因数和公倍数。

①什么叫公因数?什么叫最大公因数?

(几个数公有的因数,叫作这几个数的公因数。其中最大的一个叫作这几个数的最大公因数)

②什么叫公倍数?什么叫最小公倍数?请举例说明。

预设

生:几个数公有的倍数,叫作这几个数的公倍数,其中最小的一个,叫作这几个数的最小公倍数。如2的倍数有2,4,6,8,10,12,14,16,18,…3的倍数有3,6,9,12,15,18,…其中6,12,18,…是2和3的公倍数,6是它们的最小公倍数。

《因数和倍数》教学设计 篇4

1. 因数和倍数的定义

2和6是12的因数,12是2的倍数,12也是6的倍数

18的因数有1、18、2、9、3、6

2. 一个数的因数个数是有限的,一个数的倍数有无数个

任何数都有最小的因数1,最大的因数本身,最小的倍数也是本身

3. 2、3和5倍数的特征

2的倍数的数特征是个位是0、2、4、6、8,是2的倍数的数叫偶数,不是2的倍数的数叫奇数

5的倍数的数特征是个位是0或5

3的倍数的数特征是一个数各位上的数字的和是3的倍数,这个数就是3的倍数

4. 只有1和本身两个因数的数叫做质数(或素数)

5. 除了1和本身外还有其它因数的数叫做合数

6. 1既不是质数,也不是合数

7. 100以内的质数总共25个,它们是:

2 3 5 7

11 13 17 19

31 23 37 29

41 43 47 59

61 53 67 79

71 73 97 89

83

补充知识:

1.9的倍数的数特征是一个数各位上的数字的和是9的倍数,这个数就是3的倍数

2.既是2的倍数,又是5的倍数的数的特征是个位必须是0

3.4和25的倍数的特征是末二位是4或25的倍数

4.8和125的倍数的特征是末三位是8和125的倍数

5.如果a和b都是c的倍数,那么a-b和a+b一定也是c的倍数

6.如果a是c的倍数,那么a乘以一个数(0除外)后的积也是c的倍数

7. 偶数+偶数=偶数 偶数-偶数=偶数 偶数×偶数=偶数

偶数+奇数=奇数 偶数-奇数=奇数 偶数×奇数=偶数

奇数+奇数=偶数 奇数-偶数=奇数 奇数×奇数=奇数

奇数-奇数=偶数

无论多少个偶数相加都是偶数

偶数个奇数相加是偶数

奇数个奇数相加是奇数

《倍数与因数》教案 篇5

【教学内容】

内容:冀教版小学数学四年级上册第51-52页的《2和5的倍数的特征》

本节内容位于冀教版小学数学四年级上册的第五单元第三个课时,这部分内容在掌握倍数概念的基础上进行教学的。这部分内容将为以后学习3的倍数打下基础,同时它也是学习分解质因数、通分和约分的重要基础知识。因此,掌握本节课的内容至关重要。

【学情分析】

从学生年龄特点看,学生的归纳概括能力还比较弱。而本节课的内容比较抽象,对于四年级的学生来说有一定的难度,因此在讲授这节课时,要鼓励学生从多角度思考问题,调动学生的学习积极性。让学生自己去观察自己去思考。

【教学目标】

1.经历自主探索5和2的倍数的特征的过程。

2.知道2和5的倍数的特征,会判断一个自然数是否是2或5的倍数。

3.积极参与探索活动,愿意与同学交流自己发现的结论,并尝试用语言描述2和5的倍数的特征。

【教学重点】

归纳、概括2和5的倍数特征。

【教学难点】

通过探索2和5的倍数特征,判断一个数是否是2、5的倍数。

【教学准备】

课件、数位表纸片

【课时安排】

1课时

【教学过程】

一、旧知铺垫

1.说出1到30以内2所有的倍数(点名让学生回答)。

2、4、6、8、10、12、14、16、18、20、22、24、26、28、30

二、探索新知

(一).2的倍数的特征。

1.2、4、6、8、10、12、14、16、18、20、22、24、26、28、30(30以内的数)

师:同学们,2的这些有倍数有哪些特征?(用红颜色把个位上的数字强调出来,方便学生更清楚观察出来)

生:这些数的个位上是0、2、4、6、8。

师:那同学们这些数都是什么数?

生:这是数都是偶数。

师:不是2的倍数的数是什么数?

生:不是2的倍数的数是奇数。

2、师总结:(板书)

2的倍数特征l个位上是0、2、4、6、8的数都是2的倍数。

l2的倍数都是偶数,不是2的倍数就是奇数。

3、课件出示数字卡片;

例一:在1~100的自然数中,找出2的所有倍数,用黑笔圈出来

师:不用计算,谁能快速说出来?并且向大家分享一下你的方法(点名让学生回答)

生:(说出具体数字)我是根据2的倍数特征的得出来的。

(二)5的倍数的特征:

1.师:同学们学完2的倍数特征,我们再来一起探讨一下5的倍数有哪些特征?请同学们拿出练习本,写出50以内5所有的倍数。

师(点名让学生分享自己写出的数)

生:5、10、15、20、25、30、35、40、45、50

师:这些数字有哪些规律?(把个位上的数字用红颜色表示出来,方便学生观察)

生:这些数的末尾不是0就是5。

2.教师总结:(板书)

5的倍数特征个位数上是0或5的数都是5的倍数。

3.课件出示数字表

例二,在同一张数字表上(2的倍数已经在例一的时候圈出),圈出5的倍数

师:提出要求,不计算,快速准确的圈出来,并且分享方法。

生:根据5的倍数特征,快速准确的圈出来。

4.师:同学们,在这张数字表上有哪些数比较特殊?为什么它们同时拥有两个圈?

生:因为它们既是2的倍数,同时又是5的倍数。

(三)2和5共同的倍数特征:

师:这些数有哪些特征?生:这些数的末尾是0.师总结:板书2和5共同的倍数特征:末尾是0。

三、巩固练习,学习课堂检测。

1.圈出2的倍数。

3246938035772.圈出5的倍数9099651305212853.说出2和5共同的倍数。

243567909915607510613052128

四、进入游戏环节,此阶段共分两个游戏:

第一个游戏:

请四位同学上台,每人拿一个数位,每人说出一个不大于9的自然数,让其他同学判断是不是2的倍数,或者是不是5的`倍数。(此游戏主要是加深学生对于判断是否是2和5的倍数时,个位的重要意义。)

第二个游戏:

找三名同学,一名同学出题,一个同学答题,最后一名同学来判断答题人答题是否正确,出题人考察的知识点。(加深学生对知识点的认识)

【作业布置】

课本“练一练”3、4题。

【板书设计】

2和5的倍数的特征

1.2的倍数特征:

1)个位上是0、2、4、6、8的数都是2的倍数。

2)2的倍数都是偶数,不是2的倍数就是奇数。

2.5的倍数特征:个位数上是0或5的数都是5的倍数

3.个位上是0的数,既是2的倍数,又是5的倍数。

教学反思

通过整节课的观察和实际,我发现大部分学生都能根据自己的观察发现其中的规律,但是语言组织能力较弱,不能完全和准确的表达出来。对游戏环节的设计,深受学生的喜欢,调到了学生的学习积极性,在以后教学中要多增加此类环节。

《因数与倍数》小学教案 篇6

教学内容

教材第17页、18页内容。

教学目标

知识目标

1.使学生初步掌握2、5的倍数的特征。

2.使学生知道奇数、偶数的概念。

能力目标

1.会判断一个数是否能被2、5整除。

2.会判断奇数、偶数。

3.培养类推能力及主动获取知识的能力。

情感目标

激发学生的学习兴趣。

教学重点

掌握2、5的倍数的特征及奇数、偶数的概念。

教学难点

灵活运用2、5的倍数的特征及奇数、偶数的概念进行综合判断。

教学过程

一、激趣引入 走进课堂

1.前面我们学习了自然数、整数、因数,后来又学习了倍数,我们都说自己学的很棒,今天我就考考大家

出示:1~100的自然数。

2.导入:

这是1~100的自然数。

你能很快找出2的所有倍数吗,并用蓝笔圈出来。试一试!

3.同桌结组,比试结果。

二、探究新知

1.2的倍数的特征。

你们圈出的这些数和2有什么联系

为什么它们都是2的倍数

这些数是分别用2X1 2X2 2X3 2X4 2X5 ……得来的

请大家观察这些数,你发现这些数有什么特征?

这些数个位上是0、2、4、6、8中的一个。

这个规律正确吗?请同学们任写一些大一点的数验证一下。(学生写数验证,小组内讨论)

学生汇报,师生共同总结:看来判断一个数是不是2的倍数,只要看这个数的个数是不是0、2、4、6、8就可以了。

三、练习 出示课本第20页第一题

自学 奇数、偶数

1、关于一个数是不是2的倍数,还有很多知识,你想知道吗?请你打开课本第17页自学。

你们从书上还知道了些什么?

自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。

0也是偶数。(因为0也是2的倍数,所以也是偶数)

双数指的就是偶数,那么单数指什么呢?

学生说:奇数

2、巩固练习 出示课本第17页做一做

学生口答

根据上面的学习,你们还能想到哪些数学知识呢?

自然数根据是不是2的倍数,可分为奇数和偶数。

因为0、2、4、6、8都是偶数,所以也可以说“个位上是偶数的数都是偶数”。

3、联系生活

在生活中,你在哪儿还见过奇数和偶数?

我的身高148厘米,148就是一个偶数

2008是个偶数

同学们真有心,在我们的生活中经常用奇数、偶数对事物进行分类。

看来奇数、偶数给我们的学习、生活带来不少方便呢。

2、5的倍数的特征。

自主探索5的倍数的特征。

在课本上有100以内数的表格,请同学们打开书,找出5的倍数,看看有什么规律,和你的同桌说一说,并想办法验证你所发现的规律。

师生共同总结:个位上是0或5的数,是5的倍数。

3、既是2的倍数,又是5的倍数的数的特征

判断:下面哪些数是2的倍数?哪些数是5的倍数?哪些数既是2又是5的倍数?(60 30)

60、75、106,30,521

①引导学生思考:一个数既是2的倍数又是5的倍数,这个数有什么特征?

②汇报结果:说说你是怎样判断的?

③引导总结:个位上为0的数既是2的倍数又是5的倍数。

三、巩固发展:

(1)套圈游戏:把下面的数填在圈里。

18 24 25 30 35 36 40 42 45 46 50 65 80 100

①2的倍数:

②5的倍数:

③同时是2和5的倍数:

(2)判断。

①一个自然数不是奇数就是偶数。 ( )

②能被2除尽的数都是偶数。 ( )

③同时是2和5倍数的数,个位上的数字一定是0。 ( )

四、全课小结:

这节课你学到了哪些知识?

《倍数与因数》教案 篇7

描述目标:

1、知识目标:①结合整数乘、除法运算初步认识因数和倍数的含义;②探索求一个数的因数和倍数的方法;③通过列举法,发现并概括出一个数的因数和一个数的倍数的特点;④能找出一个数的因数、一个数的倍数。

2、能力目标:使同学在认识因数和倍数以和探索一个数的因数或倍数的过程中,进一步体会数学知识之间的内在联系,提高数学考虑的水平。

3、情感目标:培养同学观察、分析、笼统概括能力,体会教学内容的有趣,发生对数学的好奇心。

教学重点:结合整数乘、除法运算体会和理解因数和倍数的含义,探索求一个数的因数数或倍数的方法。

教学难点:引导同学探索并理解因数数和倍数之间的相互依存的关系。

教学过程;

一、导入。

1.同桌用12块完全一样的小正方形拼成一个长方形,有几种拼法?要求:能想象的就想象,不能想象的才借助小正方形摆一摆。

2.同学动手操作,并与同桌交流摆法。

3.请用乘法算式表达你的摆法。

二、理解新知。

1.理解因数和倍数。

(1)观察3×4=12

今天我们研究的内容就在这里。咱们就以第一道乘法算式为例,3×4=12,数学上3是12的因数,那4(也是12的因数,)倒过来12是3的倍数,12(也是4的倍数)。同学们很有迁移的能力,这就是我们今天所要研究的因数和倍数。

师板书:因数和倍数

(2)用因数和倍数说一说算式l×12=12,2×6=12中三个数的关系。

(3) 提问:在4+3=7中我们能说7是4和3的倍数,4和3都是7的因数吗?(同学讨论)

【设计意图:通过讲解、设疑、讨论等形式让同学从其内涵上加深对因数和倍数的理解,明确因数和倍数是相互依存的概念,不能独立存在。】

(4)归纳:

①因数和倍数都是表示两个数之间的关系,不能单独说那个数是因数,那个数是倍数。

②只有一个自然数是两个自然数的。乘积时候才干谈上它们之间具有因数和倍数的关系。

③研究因数和倍数时,所指的数是整数(一般不包括O)。

(5) 讨论:板书:24÷4=6

提问:能说4、6是24的因数,24是4、6的倍数吗?

同学各说自身的理由,讨论后统一。

提示:4×6=24(教师板书),这样你看出来了吗?

(6)练习:①21×3=63, 是 的因数, 是 的倍数;6是18的 ,是3的 。

②先判断下面的算式中的数有因数倍数的关系。假如有因数和倍数关系,请说一说谁是谁的因数,谁是谁的倍数。7+5=12 7×5=35 20-13=7 8÷4=2

【设计意图:提高对因数和倍数的意义的认识。】

2.求一个数的因数。

(1)出示2,5,12,15,36。从这些数中找一找谁是谁的因数。

请同学们找出36的所有因数。

出示要求:

①可独立完成,也可同桌合作。

②可借助刚才找出12的所有因数的方法。

③写出36的所有因数。

④想一想,怎样找才干保证既不重复,又不遗漏。

(2)比较喜欢哪一种答案?为什么?

用什么方法找既不重复又不遗漏。(按顺序一对一对找,一直找到两个因数相差很小或相等为止)

(3)练习:①对口令游戏。②16的因数有哪些? 11的因数有哪些?

(4)发现因数特点:36、16、11的因数你有什么发现吗?

师:虽然个数不相等,但它们的个数都是有限的。

小结:一个数的最小因数是1,最大的因数是它自身。一个数的因数个数是有限的。(同学总结不出此点不要急于点拨)

(5)练习:说特点猜数。

3.求一个数的倍数。

(1)3的倍数有:——,怎样有序地找,有多少个?

(2)练一练:6的倍数有;5的倍数有。

(3)发现倍数特点:找得对吗?我们一起来说一说。下面请大家仔细观察,你发现一个数的倍数有什么特点?可以前后四人小组讨论讨论。(导:发现最小的特征后问:那么7最小的倍数是几?10呢?)一个数的倍数还有怎样的特点?这些数的倍数你写得完吗?也就是说明一个数的倍数的个数是无限的。那么也没有最大的倍数。刚才大家发现了——,简单地说就是——

小结:一个数的最小倍数是自身,没有最大的倍数,一个数的倍数的个数是无限的。(和一个数的因数特点进行对比)

【设计意图:这个环节的教学主要把小组讨论和自主探索结合起来,让同学在讨论中体会过程、总结方法、提升水平,发现有关倍数的一些规律。】

(4)练习:判断题

四、拓展应用。

1.选用4,6,8,24,1,5中的一些数字,用今天学习的知识说一句话。

2.举座位号起立游戏。

(1)5的倍数。(2)48的因数。(3)既是9的倍数,又是36的因数。

(4)怎样说一句话让还坐着的同学全部起立。

五、黄金二分钟。

达标检测:

1、理解因数和倍数:练习:①21×3=63, 是 的因数, 是 的倍数;6是18的 ,是3的 。

②先判断下面的算式中的数有因数倍数的关系。假如有因数和倍数关系,请说一说谁是谁的因数,谁是谁的倍数。7+5=12 7×5=35 20-13=7 8÷4=2

【设计意图:提高对因数和倍数的意义的认识,达成知识目标中的第①个目标】

【评价规范:同学能正确理解和掌握因数和倍数的意义,尤其能通过算式找出一个数的因数和倍数】

2、会找一个数的因数:①对口令游戏。②16的因数有哪些? 11的因数有哪些?③说特点猜数。

【设计意图:通过对口令提升同学找因数的方法的方法训练,达成知识目标中的第②③个目标】

【评价规范:同学能用正确的方法,快速、正确的找出一个数的所有因数】

3、会找一个数的倍数:我会辩。【设计意图:达成知识目标中的第④个目标】

【评价规范:同学能用正确的方法,快速、正确的找出一个数的倍数】

《因数和倍数》教学设计 篇8

教学内容九年义务教育人教版小学数学五年级下册第二单元“倍数和因数”。

教学目标:

1、 通过练习,使学生进一步理解倍数和因数,奇数和偶数,素数和合数的意义。

2、 使学生进一步掌握2、3、5的倍数的特征。

3、 让学生进一步体会探索数的一些特征和方法,培养分析、比较和抽象概括能力,感受数学知识的内在联系。

4、 让学生进一步体会到数学内容的奇妙、有趣,产生对数学知识的好奇心。

练习背景:

学生在练习之前已经初步掌握了倍数、因数、奇数、偶数、素数、合数的意义。掌握了求一个数的倍数或因数的方法及其特点。学生还在学了因数和倍数的基础上发现了2、5、3的倍数的特征,根据特征能判断一个数是否是2、5、3的倍数。学习完这些概念后,很有必要对这部分知识做个梳理与练习,使学生对这些概念有进一步的理解和掌握。所以教材安排了两课时的练习,第一课时练习有关倍数和因数,以及2、3、5的倍数的特征的知识。第二课时主要以练习素数和合数概念为主,以及这些概念的比较与区分。本课是在第一课时练习的基础上进一步的巩固提高练习。通过本课的练习,进一步帮助学生清晰理解各个概念,区别容易混淆的几个概念,提高学生的数学水平。

练习设计:

一、 谈话导入:

同学们,在本单元我们学习了很多概念,上节课我们针对有关倍数、因数的概念以及2、3、5倍数的特征进行了练习,除了这些我们在这单元还学习了什么概念呢?

(设计意图:在练习之前,引导学生对学习的旧知进行回顾,唤起学生对知识的主动回忆,我估计学生都能想到还学习了素数和合数这两个概念。)

指出:今天我们这节课主要就素数和合数概念以及前面的几个概念进行一个综合练习。

二、 基本练习:

1、仔细推敲,对号入座。

在2、15、6、10、45这些数中,谁是谁的因数,谁是谁的倍数?

2、自己举个例子说说谁是谁的因数,谁是谁的倍数?

3、说一说上面这些数中哪些是奇数,哪些是偶数?

(设计意图:这里我列出了5个数字,让学生直接说出谁是谁的因数,谁是谁的倍数,相对于学生根据乘法或除法说出因数与倍数关系要稍微复杂和抽象了一些。这个练习主要帮助学生回顾梳理有关因数和倍数以及奇数和偶数的概念。)

过程及意图:

1、 先自己与同桌说一说,你能和同桌说的不一样吗?

2、 集体交流。

(设计意图:先让学生自己相互说一说,是给学生的思维一个缓冲,由于答案不是唯一的,这里不一定让学生说出全部,可以在集体交流时引导:“还有不一样的吗?”使其完整。教师不需要都板书,可以选择其中一种写一写。)

3、 自己再举例说明因数和倍数关系。

(设计意图:我设计这样一个开放性的练习,是为了让学生对因数和倍数的概念认识地更深入些。注意让多个学生说一说,学生在说一个数的因数或倍数时,提问:这个数的因数或倍数还有哪些?从而回顾因数与倍数的特点。)

4、说说这些数中哪些是奇数哪些又是偶数?

(设计意图:让学生先结合具体的数说说哪些是奇数哪些是偶数,然后引导学生有具体到抽象,回忆出什么叫奇数,什么叫偶数?我们是怎样判断奇数和偶数的?对奇数偶数的概念也做个简单的回顾,为下面这些概念的综合练习做个铺垫。)

二、对比练习

1、 找出下面每组数中的素数。

(1)19  29  39   49

(2)5   15  25   35

(3)17  27  37   47

2、 判断下面的数是素数还是合数,并说说理由。

2  21  11  45  77

(设计意图:这是书上练习六第8题,安排这个练习主要是有关素数和合数的概念的练习,通过练习使学生进一步明确什么叫素数?什么叫合数?掌握判断素数或合数的方法。后面是我自己设计的一个练习,在第一个练习完后用卡片出示,通过这五个数字的判断让学生熟练掌握判断方法。)

过程及意图:

1、 先说一说什么叫素数?什么叫合数?判断一个数是素数还是合数看什么?

(设计意图:在判断之前先帮助学生回顾有关概念及判断方法,为下面的判断练习做个铺垫,我估计一下子让学生判断对于中差生来说可能有些遗忘,一下子不知道如何下手,所以先安排了这样一个说一说。)

2、 学生在书上把素数圈出来。

3、 集体交流。

(设计意图:有了前面的回顾,学生在判断的时候有了目标,这里要注意两个问题,一是,突出素数与合数的比较。如果是素数要让学生说说为什么?如果不是,更要让学生说说为什么不是?二是,要充分利用好学生中的错误资源,让学生在错误中寻找到判断的好方法。我估计在49的判断上学生会出现意见分歧,因为一般情况学生只会去思考除了1和本身是否有因数2、5、3而忽略了有没有因数7,所以在这时要注意在错误中分析原因,并且帮助学生找到判断方法——不仅要看看是否有因数2、3、5还要注意看看是否有因数7,有时甚至还要更大,这里� )

4、 比较发现。

问:比一比每组数有什么特点?判断完后你有些什么体会?

(设计意图:这里教材安排的每组数的各位数字都相同,我估计学生这个现象都能发现,关键是让学生谈谈体会,先可以让学生自由地说一说,如果有困难可以问:从中体会到一个数是否是素数与什么无关?而与什么有关?让学生体会与各位数字无关,我们要看这个数因数的个数。因为在以往的教学中,同学们常常会在各位是7或9的数的判断上出现教多的错误。这样使学生对素数的认识更加深刻。)

三、 综合练习

1、用“〇”圈出表中所有的素数,用“△”圈出表中所有的偶数。

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

(设计意图:以往教学下来我发现学生对奇数与素数、偶数与合数往往混淆不清,这是为了区分这些概念而设计的。这里呈现一张具体的表格,让学生根据表格的现象主动区分不同的概念,体会到他们是不同的概念,但它们之间也有一定的联系,素数中有偶数,偶数里有素数。形象直观的表格避免了对这些问题进行抽象的,甚至文字游戏式的机械操练。也有利学生的理解和掌握。)

3、 判断下面的说法正确吗?不对的改正。

(1)只有两个因数的数叫做素数。  ( )

(2)1是素数。          ( )

(3)自然数中除了奇数其他都是偶数。( )

(4)自然数中除了素数其他都是合数。 ( )

(5)所有的偶数都是合数。   ( )

(设计意图:这个练习是对容易混淆的概念,进行比较和区分设计的。通过练习让学生进一步明确概念的区别和联系。)

过程及意图:

1、 用“〇”圈出表中所有的素数

2、 集体校对。

(设计意图:找素数和偶数我估计学生没有多大的困难,在校对过程中,注意引导学生思考这个问题:同学们用“〇”圈出了素数,那没有圈出来的是什么数呢?我估计有些学生马上会脱口而出“都是合数”,而后会有学生发现问题反驳这种观点,设计这个提问一是进一步理解素数、合数的概念,明确1既不是素数也不是合数,也为下面有关自然数的分类做铺垫。)

3、 用“△”圈出表中所有的偶数。

4、 集体校对

(设计意图:这里也同上引导学生思考这个问题:没有打△的都是什么数,让学生进一步明确自然数中不是偶数就是奇数。)

5、 探索规律:观察表格,你有什么发现?你有没有发现什么特别的数?

(设计意图这里改变了书上提问,不直接问:所有的素数都是奇数吗?所有的偶数都是合数吗?而是提了一个开放性的问题,先让学生自己说说自己的想法,我估计通过表格的直观呈现,“2”既打上了“〇”又打上了“△”就形象地说明了2既是素数又是偶数,充分地说明了素数中有偶数,偶数里也有素数。这里表达的方式可以多一些,只要学生说的意思正确即可。)

一键复制全文保存为WORD
相关文章