数学教案:分数优秀4篇

1。分数

数学教案:分数 1

教学内容:

九年义务教育六年制小学数学实验课本第十册91-92页《分数化成有限小数的规律》

教学目标:

1、理解掌握最简分数能否化成有限小数的规律,并能运用这一规律正确地判断一个分数能否化成有限小数;

2、让学生充分经历“猜想——验证——探索——再验证”的过程,使学生初步感受科学研究的一般方法,训练学生思维的严谨性;

3、在“猜想——探索”的过程中,培养学生的猜想、观察、分析、概括及表达能力和小组合作精神。

教学重点:让学生充分经历“猜想——探索”的过程,使他们得出分数能否化成有限小数的规律。

教学难点:探究、理解一个分数能否化成有限小数。

教具学具:多媒体 课件

教学过程:

一、提出问题

1、说出下列各数各有哪些不同的质因数?

10 35 12 8 15 21 40 22 125

2、分数化成小数,一般用什么方法?

3、提出问题。

(1)、动手操作

同学们,我们已经学习了分数化小数的方法。看这里有许多分数。媒体出示分数:

1/2、1/3、2/5、5/6、5/8、2/9、7/10、9/14、8/15、4/25、3/40、7/30

媒体出示要求:(同桌合作)

把分数化成小数(借助计算器)

根据计算的结果分类。

(2)、反馈。

谁愿意来说一说通过计算,你们把这些分数分为几类?

又是怎样分的?

在学生回答后,媒体出示分得的结果。

能化成有限小数 不能化成有限小数

1/2 2/5 5/8 1/3 5/6 2/9

7/10 4/25 3/40 9/14 8/15 7/30

左边这些分数能化成有限小数,而右边这些小数却不能化成有限小数。那么你能否一眼就看出怎么样的分数能化成有限小数,怎么样的分数不能化成有限小数呢?

这节课我们就来研究能化成有限小数的分数的规律。

(板书课题:能化成有限小数的分数的规律)

二、大胆猜想:

这两个部分的分数有什么相同的地方?有什么不同的地方?

提出问题:仔细观察这些分数,你觉得一个分数能否化成有限小数与什么有关?

学生可能提出一下三条:

(1)一个分数能不能化成有限小数与分数的分子有关。

(2)一个分数能不能化成有限小数与分数的分母有关。

(3)一个分数能不能化成有限小数与分数的分子、分母都有关。

三、探索规律:

第一次探索:

1、提出问题:有的同学认为一个分数能不能化成有限小数与分子有关。你们怎样认为?

2、反馈:你们怎样认为?

学生举例说明:1/2和1/3、2/5和2/9、5/8和5/6这三组分数每一组中分子相同,但是有的能化成有限小数,有的不能化成有限小数,所以一个分数能不能化成有限小数与分子无关。

根据学生回答:媒体闪动一下分数1/2和1/3、2/5和2/9、5/8和5/6,

小结:我们可以从1/2和1/3、2/5和2/9、5/8和5/6看出:一个分数能不能化成有限小数与分子无关。

那么我提出的第三条:与分子分母都有关,正确吗?

第二次探索:

1、提出问题:有的同学认为一个分数能不能化成有限小数与分母有关。那能化成有限小数的分数的分母有什么特征?

2、小组讨论。

学生在小组讨论中可能出现以下几种情况:

(1)分母个位是0的分数都能化成有限小数。

(2)分母是分子倍数的分数能化成有限小数。

(3)分母是2和5的倍数的分数一定能化成有限小数。

(4)能化成有限小数的分数分母中只含有质因数2和5。

3、在学生小组讨论时,教师巡视并参与,引导学生运用举例的方法进行推理。

(1)7/30分母个位是0的分数不能化成有限小数。

(2)有的同学认为:分母是2或5的倍数的分数能化成有限小数。

这个想法对吗?为什么?

学生举例说明:

5/8、7/10、4/25、3/40分母都是2或5的倍数能化成有限小数;

5/6、9/14、8/15、7/30分母都是2或5的倍数不能化成有限小数。

得出结论:“分母是2或5的倍数的分数一定能化成有限小数”是不正确的。

(3)刚才有的同学还认为:能化成有限小数的分数分母中只含有质因数2和5。小组讨论:这个结论对不对?为什么?

(4)反馈。

A、讨论中引导学生把这些分数的分母分解质因数。

反馈时,根据学生回答板书显示:

5/8 2×2×2 5/6 2×3

7/10 2×5 9/14 2×7

4/25 5×5 8/15 3×5

3/40 2×2×2×5 7/30 2×3×5

引导学生得出结论:如果分母中除了2和5以外,不含有其他质因数,这个分数就能化成有限小数。

分母中含有2和5以外的。质因数,这个分数就能化成有限小数。

生自己找几个分母中只含有质因数2和5的分数,来验证自己的猜想。

出示:B、3/15中分母15分解质因数15=3×5,分母中有质因数3,但把他化成小数等于0.2是一个有限小数。

讨论:这和我们刚才的结论不是矛盾了吗?为什么?

通过讨论得出:刚才我们讨论的分数都是最简分数,3/15不是最简分数,但是化简后等于1/5,分母中不含有2和5以外的质因数,所以能化成有限小数。

学生回答:这个分数必须是最简分数才符合这个规律。

(5)这就是能化成有限小数的分数的规律,请大家看书,把这个规律填写完整,并轻声地读两遍。

一个( )分数,如果分母中除了( )和( )以外,不含其他的质因数,这个分数就能化成( )小数;如果分母中含有( )和( )以外的质因数,这个分数就不能化成( )小数。、

三、运用规律

1、根据刚才的发现,想一想判断一个分数能不能化成有限小数要先想什么?再想什么?同桌互相说一说。

哪位同学愿意来说一说。

学生回答:先想这个分数是不是最简分数?再想分母中是否含有2和5以外的质因数?

2、练一练

判别下面各分数,哪些能化成有限小数,哪些不能化成有限小数?为什么?

3/20 27/18 15/8 4/11 32/25 8/9 7/28 3/16 9/40

29/12 14/5

小组讨论:通过刚才的判断,你又发现了什么?

学生回答:我们只要先看它是不是最简分数,再分析分母中质因数的情况

3、判断题。

(1)一个分数,如果分母中除了2和5以外,还含有其他的质因数,这个分数就不能化成有限小数。 ( )

(2)一个最简分数,如果分母中含有质因数2和5,这个分数一定能化成有限小数。 ( )

(3)一个最简分数,如果分母有约数3,一定不能化成有限小数。( )

(4)一个最简分数,如果分母有约数7,一定不能化成有限小数。( )

第(1)(2)是错误的,要求学生说说是怎样想的?怎样说就对了。

四、课堂小结

回顾一下,这节课我们探索了什么?你有那些收获?

五、拓展延伸:

刚才我们探索得到了分数化小数时的一个规律。

其实在分数化小数时,还有许多规律。

观察下列各式,按规律填空。

1/2=0.5 (2) 1/5=0.2 (5)

3/4=0.75 (2×2) 4/25=0.16 (5×5)

7/8=0.875(2×2×2) 9/125=0.072 (5×5×5)

5/16能化成( )位小数 8/625能化成( )位小数

(2×2×2×2) (5×5×5×5)

先独立思考,再小组讨论。

学生汇报时说出规律:分母中只有1个质因数2(或5)化成一位小数,只有2个质因数(2或5)化成两位小数,……只有4个质因数2(或5)所以能化成四位小数。

因为5/16分母中有4个质因数2,所以它能化成四位小数

因为8/125分母中有4个质因数5,所以它能化成四位小数。

用计算器算一算对吗?

学生通过计算器证明答案是正确的。

教师小结:在数学王国中还有许许多多的规律,我们只要认真学习,不断探索,一定能发现更多更有趣的规律。

数学教案:分数 2

【教学内容】

教科书第8页例2及练习二第3~7题。

【教学目标】

1.使学生掌握分数、小数化成百分数的方法。

2.让学生经历分数、小数化百分数的过程,培养学生抽象概括的能力。

3.能应用分数、小数化百分数的知识解决问题,培养学生的应用意识和实践能力。

【教学重点】

分数、小数化成百分数的方法和规律。

【教学准备】

收集的情境资料,图片,投影一台。

【教学过程】

一、创设情境,引入课题

教师:同学们,在日常生活中医生常常给病人推荐有益于病情好转的食品,纤维素是适合IBS患者食用的健康食品,常见的1 kg食品含纤维素大约如下:麦麸:0.31 kg;麦片:2/25 kg;燕麦片:3/42 kg;豆类:0.15 kg;辣椒:2/5 kg;坚果:0.14 kg。

教师:看了这些你们觉得应该推荐什么食品呢?

让学生猜测,说出自己的看法。

学生:这些数不好比较。

教师:怎么办呢?如果我们把这些数都化成百分数就便于比较了。

板书课题:分数、小数化百分数

二、合作探究,归纳方法

(1)根据学生的'回答,分小组进行讨论,探索比较的方法。学生可能会有以下几种方法:

①全部化成小数进行比较。

②全部化成分数进行比较。

③全部化成百分数进行比较(每种食品的含纤维素的百分率)。

根据学生的回答,教师小结前两种方法的优势和劣势,具体探究第三种方法。

(2)让学生独立尝试完成小数、分数化成百分数,并思考怎样转化成百分数。

0.31=31% 2/25=8/100=8%

(3)分小组讨论小数化成百分数、分数化成百分数的方法。找出本组中最好的一种方法,并写出计算的流程。教师进行指导,对学习有困难的小组进行讲解。

(4)学生交流方法,教师根据学生的汇报强化。

对于小数化成百分数,重点强化最常用的方法即:小数点向右移动两位,然后再添上%。

对于分数化成百分数,教师重点强化:一是当分母只含质因数2,5时可以直接利用分数的基本性质将其化成百分数;二是当分数除了2,5外还有其他的质因数的分数,要先把分数化成小数,然后再化成百分数(当除不尽时应强调保留三位小数)。比如:3/420.071=7.1%。

三、练习应用,巩固提高

1.游戏:对口令

三个同学一组,对口令,一人说百分数,另一名同学说分数,第三位同学说明这样做的理由。(要求学生每个同学说两个后要互换角色)。

2.看谁填得多

0.35<( )<37.6%(括号里面只能填分数)

25%>( )>1/5(括号里面只能填小数)

3。解决问题

解决课前出示的问题,化成百分数比较一下,确定给病人推选的食品。

四、反思小结

回顾本节课的课堂流程,反思每个流程点中的得与失,反思小数、分数化成百分数的具体方法。

数学教案:分数 3

教学目标

1、 知识目标:使学生知道储蓄的意义,明确本金、利息和利率的含义,掌握计算利息的公式,百分数应用-利息。

2、 能力目标:培养学生能够利用公式解决实际问题的能力和搜集整理资料的能力。

3、 情感目标:培养学生的投资意识和节约爱储蓄的好习惯。

内容分析

1、 重点:使学生明确本金、利息、利率的含义,掌握计算利息的公式。

2、难点: 理解本金、利息、利率的做含意以及三者之间的关系,会利用利息计算公式解答实际问题。

教学准备

1、学生上网去查寻或向父母了解有关的储蓄知识;

2、银行定期存款凭条;3、教学课件。

教学策略 质疑解疑,合作探究,学会搜集整理资料

教学模式 导入 依提纲自学 小组交流自学体会 师生补充说明

教学程序

一、启发谈话 导入新课 师:同学们,你们知道爸爸妈妈每个月的工资都做什么用了吗?剩下的暂时不用的钱呢?把钱存入银行有什么好处?那么怎样计算存款的利息呢?今天我们就来研究这问题。(板书课题:利息) 学生自由谈。 检查学生课前的调查情况。

二、自学教材 领悟新知

三、小组讨论 解决疑难

四、排疑解难 学后测查

A:排疑解难 师:下面请同学们依据自学提纲,独立自学教材38——39页的内容。屏幕显示自学提纲:1、存款的意义2、存款的种类和形式3、本金、利率和利息的含义4、存款的利息计算公式5、小丽整存整取的年利率为2.25%,年利率2.25%的含义6、利息的多少是由什么决定的?教师巡回指导,并让学生在读书过程中把重点的地方画下来。师:大家在自学过程中都学到了一些新的知识,也可能会遇到一些解决不了的问题。下面就请同学们以小组为单位,依据自学提纲把自己自学所获得的知识及遇到的问题带到小组进行交流,讨论解决。若还不能解决的问题请暂时保留。(教师巡回指导。注意倾听学生提出的新问题及解决办法。理解有误的与同学们商讨解决。使学生从悟中学。)针对学生在自学中、小组讨论中遇到的疑难发现的新问题,师生共学生自己读书。学生自己解决问题。学生画。小组合作交流,共同探讨。学生提出解决不了的问题。 锻炼学生的自学能力,小学数学教案《百分数应用-利息》。锻炼学生独立思考和质疑解疑的能力。培养学生会读书的能力。培养学生团结协作的精神。锻炼学生质疑解疑的能力。锻炼学生通过自己查找

B:屏幕出示:C:认识存款凭条,填写定期存款凭条。D:汇报上网查询到的相关资料。五、加强反馈 巩固新知六、总结深入 强化新知 七、课后作业: 同商量,研究解决。(也可利用学生上网查找的资料来共同解决)师:下面老师想检查一下大家的自学情况,看屏幕小红1999年10月1日在银行定期存了200元钱,如果存整存整取二年期的年利率是7.92 % ,到20xx年10月1日小红一共能得到多少元? (读题,给学生思考时间,谁能说一说你的想法。学生上前板演,其他人在练习本做)1、拿出存款凭条,仔细观察,你发现了什么? 2、指导学生填写并算出你将获得的利息。(选几个放展示台展示)师:你还知道存款的哪些知识或常识?1、基本练:选择题 (略)2、提高练:应用题 (略)3、思考题 (略)依自学提纲进行总结复习,说说本节课你有哪些收获。略学生说出自己的想法。学生自己做。学生观察。学生自己填。汇报搜集到的资料。学生自由说。 资料自己解决问题的能力。检测自学情况。锻炼学生把知识应用到实际生活中的能力。锻炼学生的观察能力。锻炼学生搜集整理资料的能力。检查学生的学习情况。突出本节课的重难点。锻炼学生的社会调查能力。

板书设计: 百分数的应用——利息利息的'计算公式:利息=本金×利率×时间 200×7.92%×2×(1-20%)+200

课题一:利息

教学内容:教科书第l~2页及“做一做”中的题目,练习一的第1、2题。

教学目的:使学生了解有关利息的初步知识,知道“本金”、“利息”、“利率”的含意,会利用利息的计算公式进行一些有关利息的简单计算。

教具准备:将例题写在小黑板上,活期储蓄、定期储蓄的存款凭条和取款凭条。

教学过程:

一、导入

教师提问:

“如果你家中有一些暂时不用的钱,将怎么办?”让几个学生说一说,当有学生说要把暂时不用的钱存入银行时,接着提问:

“为什么要把钱存入银行呢?”多让几个学生发表意见。

教师肯定学生的回答,再指出:把暂时不用的钱存入银行有两个好处:一是国家可以把这些钱集中起来,用在建设上,所以说储蓄可以支援国家建设;二是参加储蓄的人用钱更加安全和有计划,还可以得到利息,所以说储蓄对个人也有好处。

“你们知道利息是怎样计算的吗?”

教师:今天我们就来学习一些有关利息的知识。板书课题:“利息”

二、新课

出示例题:小丽1998年1月1日把100元钱存入银行,存定期一年。到1999年1月 1日,小丽不仅可以取回存入的 100元,还可以得到银行多付给的 5.67元,共105.67元。

先请学生读题,然后教师再说明:题目中有“存定期一年”表示什么呢?一般来讲,储蓄主要分定期存款、活期存款、大额存款等方式。所谓活期存款是指储户可以随时提取的一种储蓄方式,定期存款是有一定期限的一种存款方式。现在银行的定期存款有三个月、六个月、一年、二年、三年、五年、八年的等等。小丽存的是“定期一年”,即小丽在银行存的 100元在一般情况下要在银行存一年;如果有特殊情况也可以提前提取。

教师:在银行储蓄要弄清三个概念:本金、利息和利率。小丽在银行存入100元,也就是说她的本金是100元。板书:“存入银行的钱做本金”

存款到期时,小丽到银行取回105.67元,银行多付给小丽5.67元,这是100元定期一年的存款所得到的利息。板书:“取款时银行多付的钱叫做利息”

这5.67元的利息是根据什么给小丽的呢?是银行的工作人员根据利率计算出来的。板书:“利率就是利息与本金的比值”这是由银行规定的。利率有按年计算的,也有按月计算的。小丽存的是定期一年的存款,年利率是5.67%,也就是说如果存100元,在银行存一年可得100元的5.67%的利息,即5.67元的利息,再加上本金100元共105.67元。

根据国家经济的发展变化,银行存款的利率有时会有所调整。1997年10月中国工商银行公布的定期整存整取一年期的年利率是5.67%,二年期的年利率是5.94%.三年期的年利率是6.21%。五年期的年利率是6.66%。

按照上面的利率,如果小丽存300元钱定期存款二年,到期时她应得利息多少元?提问:

“二年期的定期整存整取的年利率是5.94%是什么意思?”(到期取款时每100元可得5.94元的利息。)

“小丽的本金是300元,到期时她每一年应得利息多少元?”(300元的5.94%。)学生口述,教师板书: 300 × 5.94%

“二年应得利息多少元?”学生口述,教师接着板书:× 2

小丽的存款到期时可以得到的利息是35.64元。

“想一想,存款的利息应该怎样计算呢?”先让学生说一说,教师再板书:利息=本金×利率×时间

“小丽的存款到期时,她可以取出本金和利息一共多少元?”(335.64元。)

如果有条件可以让学生看一看活期储蓄、定期储蓄的存款和取款的凭条。

三、巩固练习

做第2页“做一做”中的题目和练习一的第2题。先让学生独立做,然后再共同订正。

订正练习一的第2题时,可以先让学生说一说:活期储蓄每月的利率是0.1425%,表示什么意思?再引导学生分步说出: 280元每月可得利息多少元?6个月的利息是多少元?本金和利息一共多少元?

四、作业

练习一的第1题。

百分数应用-利息

数学教案:分数 4

教学目标:

1、使学生进一步理解分数的意义、分数与除法间的关系、分数的基本性质、最大公因数与约分、最小公倍数与通分等知识。

2、在知识过程中进一步发展学生的数感,发展学生分析问题解决问题的能力。

3、引导学生通过对所学内容的与反思,使学生学会条理化、系统化思考问题、问题。

教学设计

(一)谈话导入

师:这一单元我们对分数进行了较系统的学习,本节课让我们一起把与分数有联系的知识进行归纳,形成络。

(二)知识形成脉络

1、以小组为单位,交流自己在课前好的有关分数这一单元学到的知识都有哪些?

2、(1)各小组代表将你们归纳的知识在全班交流,要求举例进行说明,其余同学可根据情况进行补充。

[说明:学生在归纳汇报的过程中,知识点的展示可能是跳跃的、零散的、不够精炼的,但不要急于补充、纠正,按学生的讲解板书,尽量体现学生学习的个性。]

(2)根据同学们的努力,将本单元的知识都一一展现出来,那么你能不能发现这些知识间有哪些联系呢?你能根据这些知识间的联系将它们绘成一张知识的络图吗?

络图如下:

3、根据归纳的知识络图,就某一部分知识提己的问题,你可以要求全班同学或某一位同不给予解答。

4、通过知识的和对问题的解答,在这一单元的学习中你都学会了哪些解决问题的策略?举例说明。

(三)知识运用

1、填空:

(1)出示题目:把4米长的绳子平均分成7段,每段占全长的(),每段长()米(要求先独立完成,再集体反馈)。

师:你的答案是什么?你是怎样想的?

生:每段占全长的1/7,每段长4/7米。我是这样想的:求每段占全长的几分之几就是把全长4米看作单位“1”,把单位“1”平均分成7段,每段占1份也就是全长的4/7;每段长多少米,就是把4米平均分成7份,每份是4÷7=4/7(米)。

师:这两个问题有什么区别?

生:求每段占全长的。几分之几求的是一个分率,而求每段长多少米是求一个具体的量。他们的含义是不同的。

师:(强调指出)同学们在解题时一定要注意区分。

(2)出示题目:一共有6个正方形、5个三角形、9个五角星,其中正方形的个数占全部图形个数和的几分之几?三角形的个数占全部图形个数的几分之几?五角星的个数占全部图形个数的几分之几?

师:说说你的答案,在这里把谁看作单位“1”。

(学生练习后进行全班的交流)

师:你们分别是用什么方法把这些题回答的这么棒呢?谁能把你的经验与大家共享一下?

生1:在做第一题时,首先判断这是把整数化成分数的练习,需要运用分数的性质知识,然后用已知分母乘整数的积作为分子或用已知分子除以整数的商作为分母。

生2:第二题也是应用分数的基本性质,在观察分子、或者分母如何变化的情况下,再对相应分母或分子进行同样的变化。

生3:第三题很简单,就是用分子和分母的公因数分别同时除已知分数的分子和分母,最后把他们化成只有公因数1的最简分数。

(设计说明:练习题的设计要力求紧扣重点、难点、层次清楚,形式多样。在学生独立试作后,应订正。一旦发现错误,应让本人或其他同学纠正,把错误消灭在萌芽之中,以有利于概念牢固掌握。)

教学反思

单元:

一键复制全文保存为WORD
相关文章