一元一次方程教学反思最新5篇

作为一位不辞辛劳的人民教师,通常需要准备好一份教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。教案应该怎么写呢?下面是的小编为您带来的一元一次方程教学反思最新5篇,如果对您有一些参考与帮助,请分享给最好的朋友。

《解一元一次方程》教案 篇1

学习目标

1. 会设未知数,并利用问题中的相等关系 列方程,且正确求解

2. 会用一元一次方程解决工程问题

重点难点

重点:建立一 元一次方程解决 实际问题

难点:探究实际问题与一元一次方程的关系

教学流程

师生活动 时间

复备标注

一、 复习:

解下列方程:

1.9-3y=5y+5

2.

二、新授

例5 整理 一批图书,由一个人做要40小时完成。现在计划由一部 分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体应安排多少人工作?

分析:这里可以把总工作量看做1。思考

人均效率(一个人做1小时完成的工作量)为 。

由x人先做4小时,完成的工 作量为 。再增加2人和前一部分人一起做8小时,完成的`工作量为 。

这项工作分两 段完成,两段完成的工作量之和为 。

解:设先安排x人工作4小时。

根据两段工作量之和应是总工作量,得

.

去分母, 得 4x+8(x+2)=-1701

去括号,得 4x+8x+16=40

移项及合并同类项,得

12x=24

系数化为1,得 X=-243.

所以 -3x=729

9x=-2187.

答:这三个数是-243,729,-2187。

师生小结:对于规律问题,首先找到各个数之间的关系,发现规律,在根据问题找等量关系,设未知数,列方程,解方程,解答实际 问题。转化为方程来解决

例4 根据下面的两种移动电话计费方式表,考虑下列问题。

方式一 方 式二

月租费 30元/月 0

本地通话费 0.30元/月 0.40元/分

(1)一个月内在本地通话20 0分和350分,按方式一需交费多少元?按方式二呢?

(2)对于某个本地通话时 间,会出现按两种计费方式收费一样多吗?

解:(1)

方式一 方式二

200分 90元 80元

350分 135元 140元

( 2)设累计通话t分,则按方式一要收费(30+0.3t)元,按方式二要收费0.4t元。如果两种计费方式的收费一样,则

0.4t=30+0.3t

移项,得 0. 4t -0.3t =30

合并同类项,得 0.1t=30

系数化为1,得 t=300

由上可知,如果一个月内通话300分,那么两种计费方式相同。

思考:你知道怎样选择计费方式更省钱吗?

解后反思:对于有表格实际问题,首先读清表格提供的信息,再根据问题找等量关系,设未知数,列方程,解方程,以求出问题的解。也就是把实际问题转化为数学问题。

归纳:用一元一次方程分析和解决实际问题的基本过程如下

三、巩固练习:94页9、10

四、达标测试 :《名校》55页1.2.3.

五、课堂小结:

(1) 这节 课我有哪些收获?

(2) 我应该注意什么问题?

六、作业: 课本第94页第9题 学生作业,教师巡视帮助需要帮助的学生。在学生解答后的讲评中围绕两个问题:

(1)每一步的依据分别是什么?

(2)求方程的解就是把方程化成什么形式?

先让学生读题分析规律,然后教师进行引导:

允许学生在讨论后再回答。

在学生弄清题意后,教师引导学生说出规律,设一个未知数,表示其余未知数

学生独立解方程方程的解是不是应用题的解

教师强调解决 问题的分析思路

学生读题,分析表格中的信息

教 师根据学生的分析再做补充

学生思考问题

教师根据学生的解答,进行规范分析和解答

初中七年级上册数学《解一元一次方程》教案优质 篇2

1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义;

2、了解什么是方程,什么是一元一次方程及什么是方程的解。

1、认识列方程解决问题的思想以及用字母表示未知数,用方程表示相等关系的符号化的方法

2、结合从实际问题中得出的方程,学会用“去分母”解一元一次方程,进一步体会化归的思想。体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学习数学的热情。建立一元一次方程的概念。 问题与情境 师生活动 设计意图

一、创设情境,展示问题:

问题1:世界最大的动物是蓝鲸,一只蓝鲸重124吨,比一头大象体重的25倍少一吨,这头大象重几吨? 问题2: 章前图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水之间,距青山50千米,距秀水70千米,王家庄到翠湖有多远? 地名 时间 王家庄 10:00 青山 13:00 秀水 15:00 教师展示问题,要求用算术解法,让学生充分发表意见。算术方法:(124+1)÷25=5(吨)方程方法:可设大象重为`吨,则124=25`-1 学生独立思考,小组交流,代表发言,解释说明。问题1的算术解法:(50+70)÷2=60(千米/时) 605-70=230(千米) 问题1用算术法较容易解决,但问题2却不容易解决,这样产生矛盾冲突,使学生认识到进一步学习的必要性。 示意图有助于分析问题。

二、寻找关系,列出方程

1、对于问题1,如果设王家庄到翠湖的路程是`千米,则: 路程 时间 速度 王家庄-青山 王家庄-秀水 根据汽车匀速前进,可知各路段汽车速度相等,列方程。

2、比一比:列算式与列方程有什么不同?哪一个更简便?

3、想一想:对于问题1,你还能列出其他方程吗?如果能,你根据的是哪个相等关系?你认为列方程的关键是什么? 结合图形,引导学生分析各路段的路程、速度、时间之间的关系,填写表格。学生思考回答:

1、王家庄-青山(`—50)千米,王家庄-秀水(`+70)千米。

2、汽车以每小时(`-50)÷3千米的速度从王家庄到青山;以每小时(`+70)÷5千米的速度从王家庄到秀水。 让学生体会:用算术方法解题时,列出的算式只能用已知数,而列方程解题时,方程中既含有已知数,又含有用字母表示的未知数。

三、定义方程,建立模型

1、定义:(板书)含有未知数的等式叫做方程。

练习一:判断下列式子是不是方程,是的打“√”,不是的打“` ”。

(1)1+2=3 ( ) (4) ( ) (2) 1+2`=4 ( ) (5) `+y=2 ( ) (3) `+1-3 ( ) (6) `2-1=0 ( )

练习二:根据下列问题,设未知数并列出方程。

(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?解:设正方形的边长为` cm。那么依题意得到方程:_________. (2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的修检时间2450小时?解:经过`月这台计算机的使用时间达到规定的修检时间2450小时,那么依题意得到方程:_________. (3)某校女生占全体学生的52%,比男生多80人,这个学校有多少学生?解:设这个学校的学生为`,那么女生数为 ,男生数为 . 由此依题意得到方程:________________。 [议一议]:上面的四个方程有什么共同点? 2、定义:只含有一个未知数(元`),未知数的指数是1次,这样的方程叫做一元一次方程。

练习三:判断下列方程哪些是一元一次方程?(1) (2) (3) (4) (5)

3、方程的解:再看刚才列出的方程:4`=24,你能观察出当`=?时,4`的值正好等于24吗。学生回答后总结方程的解和解方程的概念。

4、归纳分析实际问题中的数量关系,利用其中的相等关系 列出方程,是用数学解决实际问题的一种方法。 (学生举例并完成练习一) 师生合作,根据数量关系列出方程。

教师结合练习给出方程、一元一次方程的定义。 (我国古代称未知数为元,只含有一个未知数的方程叫做一元方程,一元方程的解也叫做根) 方程的解:使方程中左右两边相等的未知数的值就是这个方程的解。 教师引导学生对上面的分析过程进行思考,将实际问题转化为数学问题的一般过程。

学生举出方程的例子。 (学生独立思考、互相讨论,先分析出等量关系,再根据所设未知数列出方程) 判断哪些是一元一次方程。 学生单独计算,并填表。 学生得出解决实际问题的模型。

四、训练巩固,课堂小结

1、根据下列问题,设未数列方程,并指出是不是一元一次方程。(1)环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?(2)甲种铅笔每枝0.3元,乙种铅笔每枝0.6元,用9元钱买了两种铅笔共20枝,两种铅笔各买了多少枝?(3)一个梯形的下底比上底多2㎝,高是5㎝,面积是40㎝2,求上底。

2、小结 本节课你学到了哪些知识?哪些方法?

五、布置作业  A、 必做 82页,第1、2、3、题; B、 拓展阿凡提经过了三个城市,第一个城市向他征收的税是他所有钱财的一半又三分之一,第二个城市向他征收的税是他剩余钱财的一半又三分之一,到第三个城市里,又向他征收他经过两次交税后所剩余钱财的一半又三分之一,当他回到家的时候,他剩下了11个金币,问阿凡提原来有多少个金币? C、课堂评价

1、 本节课的主要知识点是:

2、 你对列方程这节课的感受是:

3、 这节课我的困惑是: 解:(1) 设跑`周。 列方程400`=3000

4、 (2)设甲种铅笔买了`枝,乙种铅笔买了(20-`)枝。列方程 0.3`+0.6(20-`)=9 (3)设上底为` cm,下底为(`+2)cm.列方程 学生自己探索,独立完成,集体订正。 学生课后完成,并写学习心得。

初中七年级上册数学《解一元一次方程》教案优质 篇3

一、教材分析:

1、教材所处的地位和作用:

从数学科学本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展,从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础。教科书将本节内容安排在第一节,一方面是对小学学段已经学过的有关算术方法解题和简单方程的运用的进一步发展,另一方面考虑引入一元一次方程后,可以尽早渗透模型化的思想,使学生尽早接触利用一元一次方程解决实际问题的方法。

《课程标准》对本课时的要求是通过具体实例归纳出方程及一元一次方程的概念,根据相等关系列出方程。让学生在归纳和总结的过程中,初步建立数学模型思想,训练学生主动探究的能力,能结合情境发现并提出问题,体会在解决问题中与他人合作的重要性,获得解决问题的经验。

2、教学目标:

根据课标的要求和本节内容的特点,我从知识技能、数学思考、情感价值观三个方面确定本节课的目标:

知识技能目标

①通过对实际问题的分析,让学生体验从算术方法到代数方法是一种进步,归纳并理解一元一次方程的概念,领悟一元一次方程的意义和作用。

②在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力。

③使学生经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想。

数学思考目标

用字母表示未知数,找出相等关系,将实际问题抽象为数学问题,通过列方程解决。

情感价值目标:

让学生体会到从算式到方程是数学的进步,渗透化未知为已知的重要数学思想。体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学习数学的热情。

3、重点、难点:

结合以上目标,我在认真研究教材的基础上,立足学生发展的宗旨,确定了本节课的教学重难点。

教学重点:知道什么是方程、一元一次方程,找相等关系列方程。

教学难点:思维习惯的转变,分析数量关系,找相等关系。

二、教学策略:

如何突出重点,突破难点,从而达到教学目标的实现呢?在教学过程我运用了如下教法与手段:

1.生活引路,感知概念背景;

2.比较方法,明确意义;

3.感受过程,形成核心概念;

4.运用新知,巩固方法;

5.归纳总结,巩固发展。

本节课利用多媒体教学平台,从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型。采用教师引导,学生自主探索、观察、归纳的教学方式。

三、学情分析:

根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法。通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力。

四、教学过程:

本节课的教学过程我设计了以下六个环节:

(一) 情景引入

采用教材中的情景

在这个环节中我提出了三个问题:

问题1:从上图中你能获得哪些信息?

问题2:你会用算术方法求吗?

问题3:你会用方程的方法解决这个问题吗?

(二)学习新知

在这个环节中,我首先提出一个问题:“如果设中山市到深圳市的路程为·千米,怎样用式子表示中山市与东莞市的距离以及中山市与惠州市的距离?”,这样,学生就会主动结合图形,根据在《整式的加减》中学到的知识解决问题。

通过上述思考过程,学生已经初步了解到寻找已知量与未知量之间存在的相等关系是利用方程解决实际问题的关键所在。

然后我结合上面的过程简单归纳列方程解决实际问题的步骤并给出方程的概念。

解决实际问题的步骤:(1)用字母表示问题中的未知数;(2)根据问题中的相等关系,列出方程。(17世纪的法国数学家迪卡尔最早使用·,y,z等字母表示未知数,而我国古代则用“天元、地元、人元、物元”等表示未知数,而且要比西方早1000多年,这说明我们中华民族是一个充满智慧和才干的伟大民族。)

在这里我介绍了字母表示未知数的文化背景,其目的就是在文化层面上让学生进一步理解数学、喜爱数学,展示数学的文化魅力,这正是培养学生情感价值观的体现。

方程的概念:含有未知数的等式叫方程。小学里已经给出了方程的概念,这里可适当处理。

在这里我开始向学生渗透列方程解决实际问题的思考程序。

(三)讨论交流

讨论1:比较列算式和列方程两种方法的特点。

列算式:只用已知数,表示计算程序,依据是间题中的数量关系;

列方程:可用未知数,表示相等关系,依据是问题中的等量关系。

通过讨论,学生体会到了:用算术方法解题时,列出的算式只能用已知数,而列方程时,方程中既含有已知数,又含有用字母表示的未知数,这就是说,在方程中未知数(字母)可以和已知数一起表示问题中的数量关系。

而且随着学习的深入,学生会逐步体会到从算式到方程是数学的进步。

紧接着的思考让全班学生参与学习的过程,从而进一步地拓宽了学生的思维。

讨论2:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?

在这个讨论活动中,我采取了先小组合作交流后全班交流。

通过交流后,学生中出现如下结果:

从学生的分析所得,这两种设未知数的方法就是在以后学习中将遇到的直接设元和间接设元两种设元。

要求出路程,只要解出方程中的·即可,我们在以后几节课中再来学习。

在这个环节里,问题的开放有利于培养学生的发散思维。这样安排的目的是使所有的学生都有独立思考的时间和合作交流的时间。

(四)初步应用

学生在小学已经学过简易方程,通过以下的例题和练习可以回顾已经学过的知识,并为一元一次方程提供素材。

1、例题:根据下列问题,设未知数并列出方程:

(1)用一根长24㎝的铁丝围成一个正方形,正方形的边长是多少?

(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?

(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?

2、课堂练习:这一组例题和课堂练习的设置,其目的是让学生更进一步加强列方程解决实际问题的能力。

(五)再探新知

提取例题和练习中出现的方程请学生观察方程它们有什么共同的特点?然后达成共识:只含有一个未知数;未知数的次数是1.

在这个环节中,我引导学生观察方程特点,给出一元一次方程的概念

教师总结:只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程。

思考:下列式子中,哪些是一元一次方程?通过思考辨析,使学生巩固一元一次方程的概念,把握住概念的本质。

(六)课堂小结

让学生先归纳,然后教师补充方式进行,主要围绕以下问题:

本节课学习了哪些主要内容?一元一次方程的三个特征是什么?从实际问题中列出方程的步骤及关键是什么?

五、课堂设计理念

本节课着力体现以下几个方面:

1、突出问题的应用意识。在各个环节的安排上都设计成一个个问题,使学生能围绕问题展开讨思考、讨论,进行学习。

2、体现学生的主体意识。让学生通过列算式与列方程的比较,分别归纳出它们的特点,从而感受到从算术方法到代数方法是数学的进步;让学生通过合作交流,得出问题的不同解法;让学生对一节课的学习内容、方法、注意点等进行归纳。

3、体现学生思维的层次性。教师首先引导学生尝试用算术方法解决问题,然后再引导学生列出含未知数的式了,寻找相等关系列出方程,在寻找相等关系、设未知数及作业的布置等环节中都注意了学生思维的层次性。

4、渗透建模思想。把实际问题中的数量关系用方程形式表示出来,就是建立一种数学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力。

初中七年级上册数学《解一元一次方程》教案优质 篇4

教材分析:

《解一元一次方程(一)合并同类项与移项》是义务教育教科书七年级数学上册第三章第二节的内容。在此之前,学生已学会了有理数运算,掌握了单项式、多项式的有关概念及同类项、合并同类项,和等式性质,进一步将所学知识运用到解方程中。这为过渡到本节的学习起着铺垫作用。合并同类项与移项是解方程的基础,解方程它的移项根据是等式性质1、系数化为1它的根据是等式性质2,解方程是今后进一步学习不可缺少的知识。因而,解方程是初中数学中必须要掌握的重点内容。

设计思路:

《数学课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生情况,教学设计中采用了探究发现法和多媒体辅助教学法,在学生已有的知识储备基础上,利用课件,鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生始终处于积极探索的过程中,通过学生动手练习,动脑思考,完成教学任务。其基本程序设计为:

复习回顾、设问题导入 探索规律、形成解法 例题讲解、熟练运算

巩固练习、内化升华 回顾反思、进行小结 达标测试、反馈情况

作业布置、反馈情况。

教学目标:

1、知识与技能:(1)通过分析实际问题中的数量关系,建立方程解决实际问题,进一步认识方程模型的重要性;(2)、掌握移项方法,学会解“a·+b=c·+d”的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。

2、过程与方法:通过解形如“a·+b=c·+d”形式的方程,体验数学的建模思想。

3、情感、态度与价值观:通过合作探究,培养学生积极思考、勇于探索的精神。

教学重点:建立方程解决实际问题,会解“a·+b=c·+d”类型的一元一次方程。

教学难点:分析实际问题中的相等关系,列出方程。

教学方法:先学后教,当堂训练。

教学准备:多媒体课件等。

预习要求:要求学生自学教材第88——89页的课文内容。然后根据自己的理解分析问题2及例2;并试着进行尝试练习。找出自学中存在的问题,以便课堂学习中解决。

教学过程:

一、准备阶段:

1、知识回顾:

(1)、用合并同类项的方法解一元一次方程的步骤是什么?

(2)、解下列方程:

① -3·-2·=10 ②

2、创设问题情境,导入新课。

问题:

把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本。这个班有多少人?

如何解决这个问题呢?

二、导学阶段:

(一)、出示本节课的学习目标:

1、通过分析实际问题中的数量关系,建立用方程解决问题的建模思想和方法;

2、掌握移项方法,学会解“a·+b=c·+d”类型的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。

(二)、合作交流,探究新知

1、分析解决课前提出的问题。

问题:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本。这个班有多少人?

分析: 设这个班有·名学生。

每人分3本,共分出___本,加上剩余的20本,这批书共____________本。

每人分4本,需要______本,减去缺的25本,这批书共____________本。

这批书的总数有几种表示法?它们之间有什么关系?本题哪个相等关系可作为列方程的依据呢?

这批书的总数是一个定值,表示它的两个式子应相等,

即表示同一个量的两个不同的式子相等。

根据这一相等关系列得方程:

方程的两边都有含·的项(3·和4·)和不含字母的常数项(20与-25),怎样才能使它向 ·=a(常数)的形式转化呢?

方法过程:

2、总结移项的概念。

像上面这样把等式一边的某项变号后移到另一边,叫做 “移项” .

3、思考:上面解方程中“移项”起到了什么作用?

4、例题学习

运用移项的方法解下列方程:

三、课堂练习:

运用移项的方法解下列方程:

四、课堂小结:

本节课,我们学习了哪些知识?你还有哪些困惑?

五、达标测试:

运用移项的方法解下列方程:(25′×4=100′)

六、预习作业:

1、预习作业:自学课本第90页的课文内容及例4,完成第90页练习2题;

2、课后作业:(1)

元一次方程 篇5

2.4再探实际问题与一元一次方程

-----销售中的盈亏(第一课时)

一。 教学任务分析

知识技能

使学生根据商品销售问题中的数量关系找出等量关系,列出方程,掌握商品盈亏的求法。

教学

思考

1.会将实际问题转化为数学问题,通过列方程解决问题。

2.体会数学的应用价值。

解决

问题

会设未知数,并能利用问题中的相等关系列方程,通过分析解决销售中的。盈亏问题,进一步了解用方程解决实际问题的基本过程。

情感

态度

通过学习更加关注生活,增强用数学的意识,从而激发学习数学的热情。

让学生知道商品销售中的盈亏的算法。

难点

弄清商品销售中的“进价”“售价”及“利润””利润率”的含义和它们之间的等量关系。

二。课前准备

教具

学具

补充材料

课件

铺垫练习     课堂练习  拓广延伸练习

.教学过程设想

教  师  活  动

学生活动

设计意图

一。创设情境,引入新课

前面我们结合实际问题讨论了如何分析数量

关系,利用相等关系列方程以及如何解方程,

可以看出方程是分析和解决问题的一种很有用

的数学工具,本节课我们就来探究如何用一元

一次方程解决实际问题。

学生回忆、猜想

激起学生主动回

忆、联想和学习欲

望。

二。师生互动,课堂探究

(出示课件)

教师先介绍图片,再提问

问题一:某商店在某时间以每件60元的价格

卖出两件衣服,其中一件盈利25%,另一件亏

损25%,卖出这两件衣服总的是盈利还是亏损,

或是不盈不亏?请同学们估算卖这两件衣服的盈亏情况。

学生观察、合

作交流、讨论、

发表看法

培养学生学会合

作交流,善于听取

他人见解和敢于发

言,让学生大体估

算身边的实际问题

,可激发学习兴趣

和探究的主动性。

问题二:渐进给出,教师因情引导,并板书

利润=进价×利润率

如果一件商品的进价是40元,

(1)    如果卖出后盈利25%,那么该商品的

利润怎样算?

(2)    如果卖出后亏损25%,那么该商品的

利润怎样算?

(3)那么利润、进价、利润率有什么关系?

学生合作交流

讨论、归纳、发

表意见

让学生结合生活

经验,由身边熟悉

实际的问题构建数

学模型,培养学生

会用数学方法解决

实际问题,和由特

殊到一般,概括能

力、学生感到好学

,进而乐学,从感

性上自然地熟悉销

售中的等量关系,

并逐步突破重难点

,为以后问题打下

基础。

问题三:渐近给出,教师因情引导,并板书

利润=售价-进价

或  利润+进价=售价

(1)小卖部老板的面包进价为0.80元/个,

卖给同学们1元/个,老板获取利润怎样算?

(2)因而利润、售价、进价的关系又如何呢?

问题四:教师逐步给出,并引导学生根据问题

二、三中的等量关系来回答,解答,最后给出解

题步骤,并板书。

思考:盈利25%、亏损25%的意义?

引导学生得出:盈利25%,即这件商品的销售利润值(售价—进价)是商品进价的25%,亏损25%,即这件商品的销售亏损值(进价—售价)是商品进价的25%。

问题①:你能从大体上估算卖这两件衣服的盈亏情况吗?

问题②:如何说明你的估算是正确的呢?

问题③:如何判断是盈还是亏?

问题④:两件衣服的进价、售价分别是多少?如何设未知数?相等关系是什么?

问题⑤:商品销售中的进价、 售价、 利润、利润率有何关系?

巡视学生完成情况,给予辅导,最后给出解题

步骤。

三。归纳总结。

学生合作、交

流、讨论、思考

、补充解答过程

让学生学会回顾

已有知识,学会分

析解决实际问题,

养成好动脑、动手

、合作学习的习惯

,体验成功感,以

突破重难点,达到

教学目标。

四。知识拓展,教师给出问题

(1)    汕头琴行同时出售两台不同钢琴,每台售价为960元,其中一台盈利20%,另一台亏损20%。这次琴行是赢利还是亏损,或是不盈不亏?

(2)某商店对购买大件商品实行分期付款,明明的爸爸买了一台9000元的电脑,第一个月付款30℅,以后每月付款450元,问明明的爸爸需几个月付清余下的款?

学生独立思考

并完成、展示

及时巩固所学知

五。回顾与小结

1.能理解商品销售中的基本概念及相等关系

,熟练地应用  “利润=售价-进价、

利润=进价×利润率”

来寻找商品中的相等关系

2.能联系以前研究过的问题,加深理解用一

元一次方程解决实际问题的一般步骤。

六。拓展延伸题。(略)

学生看黑板、

屏幕、教材、记

回顾所学知识,

学会梳理、概括、

总结。

七。作业布置

教材第97页 第3、题

学生记录

对已学知识强化

巩固

一键复制全文保存为WORD
相关文章