《乘法分配律》教学反思【6篇】

身为一名到岗不久的老师,课堂教学是我们的任务之一,教学的心得体会可以总结在教学反思中,那么写教学反思需要注意哪些问题呢?以下是可爱的小编帮大家找到的6篇乘法分配律教学反思的相关文章,欢迎借鉴。

乘法分配律教学反思 篇1

乘法分配律的教学是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学生在这几个定律中的难点。

新课标强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获得对数学理解的同时,在思维能力方面得到进步和发展。

初步的教学设想是这样的:首先举一些学生身边的例题求长方形的周长,然后让学生观察这两组算式有什么样的关系。学生通过计算发现每组两个算式相等。在此基础上让学生完成长方形周长计算这样的例子并在黑板上列出,再出示例题,让学生分组讨论并解答。然后分组讨论这些算式有什么规律,引导学生发现乘法分配律并总结出这一规律。最后做一些练习巩固、拓展对乘法分配律的认识。

在教学之后发现有一些问题。孩子对于乘法分配律的作用及意义没有理解透彻,应用不够灵活,而且在口头上感觉很好,但是落笔后就发现很多类型题孩子根本就不会做,而且错误很多。所以对本节课教学目标进行了一些调整。让一名学生在黑板上板演,其他学生在本子上做,最后总结不同方法,看哪种方法简便。进一步体会乘法分配律的作用。

教学目标定位是

(1)通过学生观察、比较、分析理解乘法分配律的含义,教师引导学生概括出乘法分配律的内容。

(2)初步感受乘法分配律能使一些计算简便。

(3)培养学生分析、推理、概括的思维能力。

《乘法分配律》教学反思 篇2

昨天,我与全班同学一起进行了乘法分配律探讨学习,从作业的反馈中,一部分同学的作业相当完美,对公式的应用,变形拓展都能应用自如;我也发现部分学生的正确率很低,特别乘法分配律的“分别”相乘理解得不清楚,没有把每个加数与因数相乘,造成作业正确率低。针对这种情况,在教学中应该注意些什么,我积极思考,与同学进行交流,找出他们思维中出错的原因,正确进行补救,以达到对乘法分配律的正确运用,灵活应用。

一、乘法分配律的教学时,注重从例题的解答中引导抽象出乘法分配律。强调注重它的外形结构特点,也要同时注重其内涵。

教材中植树情境图给出了以下的条件:一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树,“一共有多少名同学参加植树活动?”这一问题,得到了如下两种解答方法。

方法一:①每组有多少名同学? 2+4=6人

②25组共有多少名同学参加植树? 6×25=150人

综合列式:(2+4)×25

=6×25

=150(个)

方法二:①挖坑种树有多少人? 4×25=100人

②抬水浇水的有多少人? 2×25=50人

③一共有多少人? 100+50=150人

综合列式:4×25+2×25

=100+50

=150(人)

同学们很容易得出(4+2)×25和4×25+2×25这两个算式结果相等。这时同学们往往注意了等式两边的“外形”结构特点,即两数的和乘一个数=两个数的积的和,而忽视从乘法意义角度去理解。这时教师可提问“为什么两个算式是相等的?”这里不仅要从解题思路的角度理解(4+2)×25=4×25+2×25是相等的,还要从乘法的意义的角度理解,即左边表示6个25,右边表示4个25加2个25,等于6个25,所以,(4+2)×25=4×25+2×25

二、注意乘法分配律的特点,多进行练习。

乘法分配律特征是两数的和乘一个数或两个积的和。在练习时学生特别容易出现错误。把算式做成(80+8)×125

=80×125+80

=10000+80

=10080

为了学生更好地掌握可以让学生划出分别相乘的`箭头如:

提醒同学把箭头画出来,把两个加数“分别”与括号外的因数相乘,这样尽量减少一些把一个加数乘掉的同学。

三、多进行分组练习

一组:15×(8+4) (80+8)×125 (40+4)×25

47×(100+1) 78×(200+2) (100-1)×125

在练习上述题后,让学生观察括号里的数如果不运用乘法分配律会变成怎样的一个算式:

15×12 88×125 44×25

47×101 78×202 99×125

这些算式我们如何将一个因数拆成两个数相加的形式,这两个加数尽量要拆成整十整百或是与外面的数相乘能得整十整百的数。

在让学生在〖〗对乘法分配律基本公式的运用掌握较好之后,再进行第二组乘法分配律反方向运用的形式。

乘法分配律教学反思 篇3

乘法分配律教学是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上进行的。它是学生较难理解与叙述的定律。因此我在教学中让学生在不断的感悟、体验、练习中理解乘法分配律,从而达到熟练掌握的效果。

一、从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。

二、在本课教学过程的设计上,我尽量想体现新课标的一些理念,注重从实际出发,把数学知识和实际生活紧密联系起来,让学生在体验中学到知识。举例:设计学校买书的情景。让学生帮助出主意。出示:“一套故事书45元,一套科技书35元,各买3套书。一共需要多少元钱?”让学生尝试通过不同的方法得出:(45+35)×3=80×3=240(元)、45×3+35×3=135+105=240(元)。此时,让学生观察通过计算方法得到了相同的结果,这两个算式可用“=”连接。使之让学生从中感受了乘法分配律的模型。从而引出乘法分配律的概念:“两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。”用字母形式表示:(a+b)×c=a×c+b×c

本节课气氛活跃,学生积极性高。可通过练习发现孩子们掌握得并不如意,在下节课我将继续加强练习。

《乘法分配律》教学反思 篇4

教学乘法分配律之后,发现学生的正确率偏低,特别是在简算时该选用乘法结合律还是乘法分配律搞不清楚。针对这种情况,在教学中应该注意些什么呢?

一、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。

教学中通过解决“济青高速公路全长多少千米”这一问题,结合具体的生活情景,得到了(110+90)x2=110x2+90x2”这一结果,教学中只注重了等式的外形特点,即两个数的和乘一个数=两个积的和。缺乏从乘法意义角度的理解。这时教师可提问“为什么两个算式是相等的?”这里不仅要从解题思路的角度理解两个算式是相等的`,还要从乘法意义的角度理解,即左边表示200个2,右边也表示200个2。所以(110+90)x2=110x2+90x2

二、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。

乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算是个有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?

三、让学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。

如:计算125×88;101×89你能用几种方法?125×88①竖式计算;②125×8×11;③125×(80+8)等。101×89①竖式计算;②(100+1)×89;③101×(80+9)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便,什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行简算,乘法结合律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。力争达到“用简便算法进行计算”成为学生的一种自主行为,并能根据题目的特点,灵活选择适当的算法的目的。

四、多练。

针对典型题目多次进行练习。练习时注意练习量和练习时间的安排。刚开始可以天天练,过段时间以后可以过1-2天练习一次,再到1周练习一次。典型题型可选择(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如68×25+68+68×74,32×125×25等

《乘法分配律》教学反思 篇5

乘法分配律是教学的难点也是重点。这节课采用从生活中的问题入手,利用学生感兴趣的具体情境展开。这节课我力图将教学生学会知识,变为指导学生会学知识,将重视结论的记忆变为重视学生获取结论的体验和感悟,将模仿式的学习变为探究式的学习。学生经历了“观察、初步发现、举例验证、再观察、发现规律、概括归纳”这样一个知识形成过程。这样不仅让学生获得了数学基础知识和基本技能,而且更能培养学生主动探究、发现知识的能力。回顾整个教学过程,这节课的亮点体现在以下几个方面:

一、从身边引入熟悉的生活问题,激趣探究

我们在教学中要为学生创设大量生动、具体、鲜活的生活情境,让学生感到数学就是从身边的生活中来的,激发学生学习的热情。在教学时,我先创设情景,提出问题:“一共有多少名学生参加这次植树活动?”。让学生根据提供的条件,用不同的方法解决,从而发现(4+2)×25=4×25+2×25这个等式。然后请学生观察,这个等式两边的运算顺序,使学生初步感知“乘法分配律”。再让学生“观察这个等式左右两边的不同之处”,再次感知“乘法分配律”。我利用情景,让学生充分的感知“乘法分配律”,为后来“乘法分配律”的探究提供了有力的保障。

二、为学生提供了自己独立探究的机会

数学教学应该是数学教学的活动。传统的教学活动往往只重视结论的记忆,而这节课我把学生的活动定位在感悟和体验上,引导学生用数学思维方式去发现,去探索。尤其是在学生初步感悟到两种算法相等关系的基础上,继续为学生创造一个思考的情景。我要求学生观察得到的两个等式,提出“你有什么发现?”。此时学生对“乘法分配律”已有了自己的一点点感知,我马上要求学生模仿等式,自己再写几个类似的等式。使学生自己的模仿中,自然而然地完成猜测与验证,形成比较“模糊”的认识。

三、为学生的学习方式的转变创设了条件

模仿学习,学生“知其然,而不知其所以然”,知识容易遗忘,而且不能灵活应用。改变学生的学习方式,让学生进行探索性的学习,不能是一句空话。在这节课上,我抓住学生的已有感知,立刻提出“观察这一组等式,你能发现其中的奥秘吗?”。这样,给学生提供了丰富的感知材料和具有挑战性的研究材料,提供猜测与验证,辨析与交流的空间,把学习的主动权力还给学生。学生的学习热情高了,自然激起了探究的火花。学生的学习方式不再是单一的、枯燥的,整个教学过程都采用了让学生观察思考、自主探究、合作交流的学习方式。我想:只有改变学习方式,才能提高学生发现问题、分析问题和解决问题的能力。

《乘法分配律》教学反思 篇6

小学数学《乘法分配律》教学反思教学乘法分配律之后,发现学生的正确率很低,特别是对乘法结合律与乘法分配律极容易混淆。针对这种情况,我认为在教学中应该注意这些问题:

1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。

教学中通过解决买水果济青高速公路全长约多少千米?这一问题,结合具体的生活情景,得到了(110+90)2=1102+902这一结果。这时我们往往比较注意了等式两边的外形结构特点,即两数的和乘一个数=两个积的和。缺乏从乘法意义角度的理解。所以这里我们不仅要从解题思路的角度理解两个算式是相等的,还要从乘法的意义的角度理解,即左边表示200个2,右边也表示200个2,所以(110+90)2=1102+902

2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。

乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)25与(404)25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15(84)和15(8+4);25125258和25125+258;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?

3、让学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。

如:计算12588;10189你能用几种方法?

12588 ①竖式计算; ②125811;③125(80+8);④125(100-12);⑤(100+25)88; ⑥(100+20+5)88等等。

10189 ①竖式计算;②(100+1)89;③101(80+9);101(100-11);101(90-1)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便,什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行间算的条件是不一样的。乘法分配律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。力争达到用简便算法进行计算成为学生的一种自主行为,并能根据题目的。特点,灵活选择适当的算法的目的。

4、多练,针对典型题目多次进行练习。

练习时注意练习量和练习时间的安排。刚开始可以天天练,过段时间以后可以过1-2天练习一次,再到1周练习一次。典型题型可选择(40+4)25;(404)25;6325+6375;65103-653;5699+56;12588;48102;4899等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如3698+72;6825+68+6874,3212525等。

一键复制全文保存为WORD
相关文章