时间过得太快,让人猝不及防,我们的工作又将迎来新的进步,是时候静下心来好好写写计划了。你所接触过的计划都是什么样子的呢?这里是爱岗敬业的小编为大伙儿分享的7篇高一数学教学计划的相关文章,欢迎参考,希望大家能够喜欢。
教学目标 :
(1)理解子集、真子集、补集、两个集合相等概念;
(2)了解全集、空集的意义,
(3)掌握有关的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;
(4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集;
(5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;
(6)培养学生用集合的观点分析问题、解决问题的能力。
教学重点:子集、补集的概念
教学难点 :弄清元素与子集、属于与包含之间的区别
教学用具:幻灯机
教学过程 设计
(一)导入 新课
上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识。
【提出问题】(投影打出)
已知 , , ,问:
1.哪些集合表示方法是列举法。
2.哪些集合表示方法是描述法。
3.将集M、集从集P用图示法表示。
4.分别说出各集合中的元素。
5.将每个集合中的元素与该集合的关系用符号表示出来。将集N中元素3与集M的关系用符号表示出来。
6.集M中元素与集N有何关系。集M中元素与集P有何关系。
【找学生回答】
1.集合M和集合N;(口答)
2.集合P;(口答)
3.(笔练结合板演)
4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)
5. , , , , , , , (笔练结合板演)
6.集M中任何元素都是集N的元素。集M中任何元素都是集P的元素。(口答)
【引入】在上面见到的集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题。
(二)新授知识
1.子集
(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。
记作: 读作:A包含于B或B包含A
当集合A不包含于集合B,或集合B不包含集合A时,则记作:A B或B A.
性质:① (任何一个集合是它本身的子集)
② (空集是任何集合的子集)
【置疑】能否把子集说成是由原来集合中的部分元素组成的集合?
【解疑】不能把A是B的子集解释成A是由B中部分元素所组成的集合。
因为B的子集也包括它本身,而这个子集是由B的全体元素组成的。空集也是B的子集,而这个集合中并不含有B中的元素。由此也可看到,把A是B的子集解释成A是由B的部分元素组成的集合是不确切的。
(2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。
例: ,可见,集合 ,是指A、B的所有元素完全相同。
(3)真子集:对于两个集合A与B,如果 ,并且 ,我们就说集合A是集合B的真子集,记作: (或 ),读作A真包含于B或B真包含A。
【思考】能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集。”
集合B同它的真子集A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合A,B.
【提问】
(1) 写出数集N,Z,Q,R的包含关系,并用文氏图表示。
(2) 判断下列写法是否正确
① A ② A ③ ④A A
性质:
(1)空集是任何非空集合的真子集。若 A ,且A≠ ,则 A;
(2)如果 , ,则 .
例1 写出集合 的所有子集,并指出其中哪些是它的真子集。
解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集。
【注意】(1)子集与真子集符号的方向。
(2)易混符号
①“ ”与“ ”:元素与集合之间是属于关系;集合与集合之间是包含关系。如 R,{1} {1,2,3}
②{0}与 :{0}是含有一个元素0的集合, 是不含任何元素的集合。
如: {0}。不能写成 ={0}, ∈{0}
例2 见教材P8(解略)
例3 判断下列说法是否正确,如果不正确,请加以改正。
(1) 表示空集;
(2)空集是任何集合的真子集;
(3) 不是 ;
(4) 的所有子集是 ;
(5)如果 且 ,那么B必是A的真子集;
(6) 与 不能同时成立。
解:(1) 不表示空集,它表示以空集为元素的集合,所以(1)不正确;
(2)不正确。空集是任何非空集合的真子集;
(3)不正确。 与 表示同一集合;
(4)不正确。 的所有子集是 ;
(5)正确
(6)不正确。当 时, 与 能同时成立。
例4 用适当的符号( , )填空:
(1) ; ; ;
(2) ; ;
(3) ;
(4)设 , , ,则A B C.
解:(1)0 0 ;
(2) = , ;
(3) , ∴ ;
(4)A,B,C均表示所有奇数组成的集合,∴A=B=C.
【练习】教材P9
用适当的符号( , )填空:
(1) ; (5) ;
(2) ; (6) ;
(3) ; (7) ;
(4) ; (8) .
解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .
提问:见教材P9例子
(二) 全集与补集
1.补集:一般地,设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作 ,即
.
A在S中的。补集 可用右图中阴影部分表示。
性质: S( SA)=A
如:(1)若S={1,2,3,4,5,6},A={1,3,5},则 SA={2,4,6};
(2)若A={0},则 NA=N*;
(3) RQ是无理数集。
2.全集:
如果集合S中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用表示。
注: 是对于给定的全集 而言的,当全集不同时,补集也会不同。
例如:若 ,当 时, ;当 时,则 .
例5 设全集 , , ,判断 与 之间的关系。
新学期已开始,为使新学期的工作有条不紊的进行,使教学工作更加科学合理,使学生对知识的接收更加得心应手,特订新学期个人教学计划如下
一、指导思想
加强现代教育理论的学习,提高自身的素质,转变教育观念,以教育科研为先导,以培养学生的创新精神和实践能力为重点,深化课堂教学改革,大力推进素质教育。
二、教材分析
本册教材具有以下几个明显的特点:
1、为学生的数学学习构筑起点
教科书提供了大量数学活动的线索,作为所有学生从事数学学习的出发点。目的是使学生能够在所提供的学习情景中,通过探索与交流等活动,获得必要的发展。
2、向学生提供现实,有趣,富有挑战性的学习素材
教科书从学生实际出发,用他们熟悉或感兴趣的问题情景引入学习主题,并提供了众多有趣而富有数学含义的问题,以展开数学探究。
3、为学生提供探索,交流的时间与空间
教科书依据学生已有的知识背景和活动经验,提供了大量的操作,思考与交流的机会,帮助学生通过思考与交流,梳理所学的知识,建立符合个体认知特点的知识结构。
4、展现数学知识的形成与应用过程
教科书采用"问题情境—建立模型—解释,应用与拓展"的模式展开,有利于学生更好地理解数学,应用数学,增强学好数学的信心。
5、满足不同学生的发展需求
教科书中"读一读"给学生以更多了解数学,研究数学的机会。教科书中的习题分为两类:一类面向全体学生;另一类面向有更多数学需求的学生。
三、教材的重点和难点
本册教材从内容上看,教学重点是三角形和四边形的性质定理
和判定定理的应用以及一元二次方程的应用。教学难点是对反
比例函数的理解及应用;用试验或模拟试验的方法估计一些复
杂的随机时间发生的概率。
四、教学措施:
1、根据学生实际,创造性地使用教材,积极开发和利用各种教学资源,为学生提供丰富多彩的学习素材。
2、加强直观教学,充分利用教具,学具等多媒体教学,以丰富学生感知认识对象的途径,促使他们更加乐意接近数学,更好地理解数学。
3、关注学生的个体差异,有效的实施有差异的教学,使每个学生都能得到充分的发展。
4、加强学生学习习惯的培养,主要培养学生的书写,认真分析问题的习惯。同时注意学习态度的培养。
五、时间安排
4月1日——4月20日一元二次方程
5月16日——5月31日反比例函数
6月1日——6月10日频率与概率
6月11日——7月11日复习考试
一.基本情况分析:
1.学生情况分析:4个重点班的学生,基础比较好,学习积极性高。普通班学生在基础、学习习惯、学习自觉性等方面都有一定差距,因此在教学中需时时提醒学生,培养其自觉性。学生存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于强化基础知识,培养学生的计算能力,提高思维能力,争取每堂课教学一个知识点,掌握一个知识点。
2.教材分析:本学期时间短,教学任务是必修4第二章,必修5,必修2涉及平面向量,解三角形,数列,空间几何体,点,线面的位置关系,直线与方程,圆与方程。
二.工作要点及措施
1、教案学案一体化继续探索适合我校学生实际的课堂教学模式,为发挥学生的主体作用,切实提高课堂效率,本学期推行三图四化的使用,基本操作办法是,提前一天把学案发给学生,让学生课前预习,即先自主学习,在课堂上,让学生充分活动,在教师的问题引导下,积极思考,同学之间认真讨论,确定问题的解决的方法途径和结论,教师在课堂上做好问题的引导和问题的变式,想方设法的激励学生思考问题,在学生回答问题后对学生进行肯定和鼓励。
三图四化工厂的设计
组内成员先自行设计出学案初稿,然后经备课组全体成员集体教研、讨论,确定学案的定稿。由于课型不同,学案的环节也相应存在着不同,但每个学案都应包括学习目标、学习重点、导学问题、学法指导、达标训练等环节,在设计中要把握问题的难度,在操作中低重心运行,为保证高考升学取得大面积丰收,教学要面向全体学生,教学要求要低一些,让后进生能接受,调动他们的学习积极性,促进后进生的转变,由此来督促中上等学生的学习。
(1)学习目标的制定。学习目标要明确,学生能一目了然,切忌学习目标过多,让学生在课堂的开始就引起消极情绪。
(2)导学问题的设计。导学问题的设计不是把课本所学知识变成问题然后简单逻列,而是根据教材的特点,学生的实际水平能力,联系社会现实问题,设计成不同层次的问题。问题的设计和问题的形式灵活多样,可以是问题式、简答式等等,根据学习内容的不同采用不同的形式。
(3)学法指导。
学法指导也就是学习方法、活动方式的指导及疑难问题的提示等。学生对每节课知识掌握的如何,学习方法的指导起到了关键作用。本环节的目的是让学生在平时的学习过程中随时掌握解决问题的方法,逐步由学会变为会学。
(4)达标训练的设计。为了使学到的知识及时得到巩固、消化和吸收,进而转化为能力,要精心设计有阶梯性、层次性的达标训练,要注意此环节应面向全体学生,发展各类学生的潜能,让每个学生在每节课后都有收获,都有成就感。
2、集体备课我们要克服以往集体备课中存在的问题,真正提高说课质量,使集体备课对每位教师尤其是新教师起到有效的指导和帮助作用,将集体备课落到实处。具体做法如下:
(1)提前确定教学进度、中心发言人(详情见附表)及说课时间(每周五下午6、7节)。
(2)中心发言人针对本年级学生实际情况,精心设计课堂结构,精选例题和作业,设计好学案,可以适当多选些题目,文科生在此基础上可进行适当删改(本学期在教学内容上文理没有什么差别),要注意低起点、多重复。说课时,要说透教材、教法、教学重点和难点,例题要说明选题意图,要有详细的解题过程、注意事项等,特别要在教学方法的改进上多下功夫,要从学生现有的认知水平出发,设想学生可能出现的种种问题及应对措施。作业要有针对性,层次性,既巩固课上的知识点、题型,又要有一定的思维延展性,使文理科的学生在作业上有一定的区分度,使学有余力的学生有一个锻炼、培养思维能力的平台。
(3)每位教师在说课前都要做好准备,认真研究教材教法知道要说的是什么内容,包括哪些基础知识和基本题型,了解本部分内容涉及的数学思想方法,做完说课稿上的例题、习题、作业,对例题的讲解和其中蕴含的数学思想和解题技巧、计算技巧形成一个明确的认识,并写好初备提纲,以备说课时作出必要的补充和自己的见解。每位教师可以对说课稿进行补充,也可就初备中发现的问题提问,然后全组教师进行交流,以改进教法、增删例题和作业,使说课稿更加完善和实用。
3、集体听评课为提高每位教师的教育教学水平,依据学校教学计划,青年教师每周听课1节,其他教师月至少2节。每周进行一次集体听评课活动(详情见附表)。评课时不仅要说优点,更要说不足和遗憾,提出意见和建议。当局者迷,这样做有利于授课教师认清自身存在的问题,以改进教学,这也是对授课教师负责任的一种表现。通过评他人的课,对比查找自己存在的问题,有利于改进教学。
4、教案:要写明教学时间、课题、教学重点难点、教学方法、教学过程等。集体说课后,每位教师都要结合本班学生实际情况,精心设计课堂45分钟应如何分配到各个教学环节,要提问什么问题,提问谁,例题怎样分析,渗透什么思想方法。教学过程要有复习回顾、导入设计、师生活动、例题的分析、作业设计与小结等。每位教师上完课之后都要思考两个问题:我这节课上得如何?怎样上这节课更好、最好?并结合课堂上出现的'各种情况,认真写好教学反思,或总结经验,或反思失误,或记录灵感,为今后教学和科研工作积累最实用的资料。
5、上课要重视三图四化的应用,要用好学案,设计整个课堂的教学环节;
(1)我们要率先遵守课堂常规,及时到位候课,提醒学生做好上课的准备。上课过程中,语言要简洁生动,板书、解题、作图要规范严谨,不要出现知识性错误。身教胜于言教,我们怎样要求学生,就应比他们做地更好,用自身的行动为学生作好示范。
(2)把主动权交给学生,多作主持人,少当播音员。学生能做的事,就交给学生做,不要好心办坏事。但必须指出,对于学生理解有困难、易混、易错的知识和题目,一定要多讲、讲透,千万不要为了形式上的留时间、留空间造成学生在知识和方法上出现漏洞。
(3)针对学生存在的问题,继续加强对学生学习习惯的培养,包括如何记笔记,记什么;培养先复习再做作业的习惯;独立思考的习惯;遇到困难查教材、查笔记的习惯等。
6、作业批改批改作业前,全组成员要校对答案,汇总解题方法。批改作业的基本要求是全批全改、及时准确。对错误较多的题目,认真分析原因,集中讲评,并督促他们改正;对学生书写、计算、作业整理方面存在的问题,要进行学法指导;认真书写评语,既要指出问题,又要多些鼓励
7、坐班:全组教师严格遵守学校的坐班纪律,保持办公室的安静,搞好办公室的卫生,责任到人,全组教师共同努力,创设良好的办公环境,提高干事的效率。
一、指导思想
准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的。创新精神,运用数学的意识和能力,奠定他们终身学习的基础。
二、教学建议
1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。
2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。
3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。
4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。
5、落实课外活动的内容。组织和加强数学兴趣小组的活动内容。
三、教学内容
第一章集合与函数概念
1.通过实例,了解集合的含义,体会元素与集合的属于关系。
2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。
3.理解集合之间包含与相等的含义,能识别给定集合的子集。
4.在具体情境中,了解全集与空集的含义。
5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。
6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
7.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
8.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
9.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。
10.通过具体实例,了解简单的分段函数,并能简单应用。
11.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。
12.学会运用函数图象理解和研究函数的性质。
课时分配(14课时)
第二章基本初等函数(I)
1.通过具体实例,了解指数函数模型的实际背景。
2.理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。
3。理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。
4.在解决简单实际问题过程中,体会指数函数是一类重要的函数模型。
5。理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及其对简化运算的作用。
6。通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性和特殊点。
7.通过实例,了解幂函数的概念;结合函数的图象,了解它们的变化情况。
课时分配(15课时)
第三章函数的应用
1。结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。
根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
2。利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
3。收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。
4。根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。
课时分配(8课时)
考生只要在全面复习的基础上,抓住重点、难点、易错点,各个击破,夯实基础,规范答题,一定会稳中求进,取得优异的成绩。
本节课在教材中的地位和作用:《不等式的基本性质》,对即将要学习的一元一次不等式的解法乃至高中的不等式的运用都是非常重要的基础。本节内容掌握的好坏,将直接影响到后面的教学内容。而对于不等式的基本性质1和2,相信绝大部分的学生都不会有很大困难,而不等式的基本性质3,通过对以往学生的了解,发现很多学生会忘记分正负两种情况,因此在本节新课教学中,我采用了将不等式未知的性质与等式已知的性质进行类比教学,让学生自己去发现验证不等式的性质。
一、教学目标:
(一)知识与技能
1、掌握不等式的三条基本性质。
2、运用不等式的基本性质对不等式进行变形。
(二)过程与方法
1、通过等式的性质,探索不等式的性质,初步体会“类比”的数学思想。
2、通过观察、猜想、验证、归纳等数学活动,经历从特殊到一般、由具体到抽象的认知过程,感受数学思考过程的条理性,发展思维能力和语言表达能力。
(三)情感态度与价值观
通过探究不等式基本性质的活动,培养学生合作交流的意识和大胆猜想,乐于探究的良好思维品质。
二、教学重难点
教学重点: 探索不等式的三条基本性质并能正确运用它们将不等式变形。
教学难点: 不等式基本性质3的探索与运用。
三、教学方法:自主探究——合作交流
四、教学过程:
情景引入:1.举例说明什么是不等式?
2、判断下列各式是否成立?并说明理由。
( 1 )若x-4=12, 则x=16()
( 2 )若3x=12, 则 x=4()
( 3 )若x-4>12 则 x>16()
( 4 )若3x>12则 x>4()
【设计意图】(1)、(2)小题唤起对旧知识等式的基本性质的回忆,(3)、(4)小题引导学生大胆说出自己的想法。通过复习既找准了旧知停靠点,又创设了一种情境,给学生提供了类比、想象的空间,为后续学习做好了铺垫。
教师导语:当我们开始研究不等式的时候,自然会联想到它是否与等式有相类似的性质。这节课我们就通过类比来探究不等式的基本性质。
温故知新
问题1.由等式性质1你能猜想一下不等式具有什么样的性质吗?
等式性质1:等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。
估计学生会猜:不等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。教师引导:“=”没有方向性,所以可以说所得结果仍是等式,而不等号:“>,<,≥,≤”具有方向性,我们应该重点研究它在方向上的变化。
问题2.你能通过实验、猜想,得出进一步的结论吗?
同桌同学通过实例验证得出结论,师生共同总结不等式性质1。
问题3.你能由等式性质2进一步猜想不等式还具有什么性质吗?
等式性质2:等式两边都乘或除以同一个数(除数不能是0),等式依然成立。
估计学生会猜:不等式两边都乘或除以同一个数(除数不能是0),不等号的方向不变。
你能和小伙伴一起来验证你们的猜想吗?(教师鼓励学生实践是检验真理的唯一标准。)
学生在小组内合作交流,发现了在不等式两边都乘或除以同一个数时,不等号的方向会出现两种情况。教师进一步引导学生通过分析、比较探索规律,从而形成共识,归纳概括出不等式性质2和3。
【设计意图】猜想作为教学的出发点,启发学生积极思维,探索规律,让学生在“做”数学中学数学,真正成为学习的主人。
问题4.在不等式两边都乘0会出现什么情况?
问题5.如果a、b、c表示任意数,且a
【设计意图】把文字语言转化为数学语言,是数学学习中的一项基本能力,这里有意识地进行渗透,指导学生先作变形再填不等号,对字母c的取值进行讨论,培养学生的分类意识,对培养学生的思维能力有十分重要的意义。
【想一想】不等式的基本性质与等式的基本性质有什么相同之处,有什么不同之处?
学生思考,独立总结异同点。
【设计意图】引导学生把二者进行比较,有助于加深对不等式基本性质的理解,促成知识的“正迁移”。
综合训练:你能运用不等式的基本性质解决问题吗?
1、课本62页例3
教师引导学生观察每个问题是由a>b经过怎样的变形得到的,应该应用不等式的哪条基本性质。由学生思考后口答。
【设计意图】对学生进行推理训练,让学生明白,叙述要有根据,进一步提高学生的逻辑思维能力和语言表达能力。
2、�
3、小明的困惑:
小明用不等式的基本性质将不等式m>n进行变形,两边都乘以4,4m>4n,两边都减去4m, 0>4n-4m,即0>4(n-m),两边都除以(n-m),得0>4,0怎么会大于4呢?
小明可糊涂了……聪明的同学,你能告诉小军他究竟错在什么地方吗?同桌讨论。
【设计意图】通过替人排忧解难,强化对不等式三个基本性质的理解与运用,突出重点,突破难点。
4、火眼金睛
①a>2, 则3a___2a
②2a>3a,则 a ___ 0
【设计意图】通过变式训练,加深学生对新知的理解,培养学生分析、探究问题的能力。
课堂小结:
这节课你有哪些收获?有何体会?�
【设计意图】回顾、总结、提高。学生自觉形成本节的课的知识网络。
思考题:你来决策
咱们班的王帅同学准备在五、一期间和他的爸爸、妈妈外出旅游。青年旅行社的标准为:大人全价,小孩半价;方正旅行社的标准为:大人、小孩一律八折。若两家旅行社的基本价一样,你能帮王帅同学考虑一下选择哪家旅行社更合算吗?
【设计意图】利用所学的数学知识,解决生活中的问题,加强数学与生活的联系,体验数学是描述现实世界的重要手段。既培养了学生用数学知识解决实际问题的能力,又树立了学好数学的信心。
本学期担任高一5、6两班的数学教学工作,两班学生共有110人,初中的基础参差不齐,但两个班的学生整体水平还能够;部分学生学习习惯不好,很多学生不能正确评价自我,这给教学工作带来了必须的难度,为把本学期教学工作做好,制定如下教学工作计划。
一、教学目标、
(一)情意目标
(1)经过分析问题的方法的教学,培养学生的学习的兴趣。
(2)供给生活背景,经过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。
(3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识
(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。
(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维本事的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。
(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。
(二)本事要求
1、培养学生记忆本事。
(1)经过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。
(3)经过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆本事。
2、培养学生的运算本事。
(1)经过概率的训练,培养学生的运算本事。
(2)加强对概念、公式、法则的`明确性和灵活性的教学,培养学生的运算本事。
(3)经过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性本事。
(4)经过一题多解、一题多变培养正确、迅速与合理、灵活的运算本事,促使知识间的滲透和迁移。
(5)利用数形结合,另辟蹊径,提高学生运算本事。
3、培养学生的思维本事。
(1)经过对简易逻辑的教学,培养学生思维的周密性及思维的逻辑性。
(2)经过不等式、函数的一题多解、多题一解,培养思维的灵活性和敏捷性,发展发散思维本事。
(3)经过不等式、函数的引伸、推广,培养学生的创造性思维。
(4)加强知识的横向联系,培养学生的数形结合的本事。
(5)经过典型例题不一样思路的分析,培养思维的灵活性,是学生掌握转化思想方法。
(三)知识目标
1、集合、简易逻辑
(1)理解集合、子集、补订、交集、交集的概念、了解空集和全集的意义、了解属于、包含、相等关系的意义、掌握有关的术语和符号,并会用它们正确表示一些简单的集合。
(2)理解逻辑联结词"或"、"且"、"非"的含义、理解四种命题及其相互关系、掌握充分条件、必要条件及充要条件的意义。
(3)掌握一元二次不等式、绝对值不等式的解法。
2、函数
(1)了解映射的概念,理解函数的概念。
(2)了解函数的单调性、奇偶性的概念,掌握确定一些简单函数的单调性、奇偶性的方法。
(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数。
(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质。
(5)理解对数的概念,掌握对数的运算性质、掌握对数函数的概念、图像和性质。
(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题。
3、数列
(1)理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。
(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题。
(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。
二、教学重点
1、集合、子集、补集、交集、并集、一元二次不等式的解法
四种命题、充分条件和必要条件、
2、映射、函数、函数的单调性、反函数、指数函数、对数函数、函数的应用。
3、等差数列及其通项公式、等差数列前n项和公式。
等比数列及其通项公式、等比数列前n项和公式。
三、教学难点
1、四种命题、充分条件和必要条件
2、反函数、指数函数、对数函数
3、等差、等比数列的性质
四、工作措施
抓好课堂教学,提高教学效益。课堂教学是教学的主要环节,所以,抓好课堂教学是教学之根本,是大面积提高数学成绩的主途径。
(1)、扎实落实团体备课,经过团体讨论,抓住教学资料的实质,构成较好的教学方案,拟好典型例题、练习题、周练题、章考题、月考题。
(2)、加大课堂教改力度,培养学生的自主学习本事。最有效的学习是自主学习,所以,课堂教学要大力培养学生自主探究的精神,经过“知识的产生,发展”,逐步构成知识体系;经过“知识质疑、展活”迁移知识、应用知识,提高本事。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。
本学期的措施及打算
1.一周学习早知道。明确目标更能确定努力的方向。为了让学生学习更有目的性,有效性和积极性,每周第一节课给出一周的教学进度,学习目标和过关要求。不仅老师要做到对所教内容清楚明了,也要让学生对所学内容做到每周学习目标清晰化。
2.落实“每周测试”过关制。周测内容与一周学习目标及一周的讲授内容紧密相连。未尽力而又没有过关的学生将按事先说明的措施给予处罚。以便让学生重视课堂学习,重视平时作业,重视一周的学习过程。做到让学生每周学习过程精细化。
3.根据学生学力状况进行分层次的培优补差。
三、教学进度安排
周次学习内容目标要求
1必修4 第一章三角函数:第1至3节周期,角的推广及表示,弧度制及互化
2军训
3第4节:正弦函数单位圆,正弦函数定义,象限符号,诱导公式,五点法画图像,图像及性质。
4第5节:余弦函数,第6节正切函数余弦函数正切函数定义,象限符号,诱导公式,图像及性质
5第7节: 的图像,第8节:同角的基本关系。图像变换规律,同角三角函数的基本关系及其运用。章节复习,章节过关测试。
6第二章:平面向量:第1节至第2节向量,有向线段,向量的长及相等、平行、共线、单位向量等概念,向量的加减法运算
7第3节至第5节数乘向量,基本定理,向量运算的巩固训练,平面向量的坐标表示及运算。数量积的应用。
8第5节至第7节数量积的应用及坐标表示,向量应用举例。习题课,章节复习,章节过关测试。
9第三章:三角恒等变换:第1节至第2节两角和差的公式得推导,记忆及灵活运用,二倍角公式得来源及运用。期中复习。
10期中考试期中复习,期中考试。
11第三章第3节:三角函数的简单应用试卷讲评改错,简单应用,三角恒等变换的综合习题课,练习,章节复习,必修4基本测试。
12“五。一”长假
13必修3第一章:统计。第1节至第5节统计的程序,统计图,统计方案设计,普查与抽样,抽样方法,分层抽样与系统抽样,花统计图表及读统计图表,数字特征:平均数,中位数,众数,级差,方差的意义及计算分析,
14第6节至第9节样本对总本的估计及相应的数字特征的计算分析,统计实践活动,变量的相关性及例题分析,最小二乘估计。章节复习,章节过关测试。
15第二章:算法初步:第1节至第3节基本思想,基本结构及设计,排序问题。
16第4节:几种基本语句条件语句,循环语句,复习三角函数的基本内容,章节复习,三角函数与算法初步过关测试。
17第三章:概率:第1节至第2节频率,概率,古典概率,概率计算公式。
18第2节至第3节建概率模型,互斥事件,习题课,章节复习,章节过关测试。
19期末复习
20期末复习,期末考试