作为一名默默奉献的教育工作者,时常会需要准备好教案,编写教案助于积累教学经验,不断提高教学质量。那么教案应该怎么写才合适呢?为大家精心整理了小学六年级数学《圆锥的体积计算》教案设计优秀6篇,希望能够帮助到大家。
教学内容
教科书第39~40页例1,课堂活动及练习九第1题,第2题。
1.在操作和探究中理解并掌握圆锥的体积计算公式。
2.引导学生探究、发现,培养学生的观察、归纳等能力。
3.在实验中,培养学生的数学兴趣,发展学生的空间观念。
一、圆锥体积的计算公式的推导过程。
圆锥体积计算公式的理解。
小黑板、等底等高的圆柱和圆锥、圆柱形水槽、河沙或水。一、情景铺垫,引入课题
教师出示小黑板画面,画面中两个小孩正在商店里买蛋糕,蛋糕有圆柱形和圆锥形两种。圆柱形蛋糕的标签上写着底面积16CM2,高20CM,单价:40元/个;圆锥形的蛋糕标签上写着底面积16CM2,高60CM,单价:40元/个。
屏幕上出示问题:到底选哪种蛋糕划算呢?
教师:图上的两个小朋友在做什么?他们遇到什么困难了?他们应该选哪种蛋糕划算呢?谁能帮他们解决这个问题?
教师抽学生回答问题。
可能会出现以下几种情形:
第一种学生会认为买圆柱形的蛋糕比较划算,理由是这种蛋糕比圆锥形蛋糕的个大。
第二种学生会认为买圆锥形的蛋糕比较划算,理由是这种蛋糕比圆柱形蛋糕高。
第三种学生会认为不能确定,理由是不知道谁的体积大,无法比较。
教师:看来要帮助这两个同学不是一件容易的事情,解决这个问题的关键在哪里?
学生明白首先要求出圆锥形蛋糕的体积。
教师:怎样计算圆锥的体积?这节课我们一起研究圆锥体积的计算方法。
揭示课题。板书课题:圆锥的体积
二、自主探究,感悟新知
1.提出猜想,大胆质疑
教师:谁来猜猜圆锥的体积怎么算?
学生猜测:圆柱和圆锥的底面都是圆的,它们之间可能有联系,可不可以把圆锥变成圆柱,求出圆柱的体积,从而得出圆锥的体积……
对学生的各种猜想,教师给予肯定和表扬。
2.分组合作,动手实验
教师:圆锥的体积和圆柱的体积之间究竟有没有关系呢?如果有关系的话,它们之间又是一种什么关系?通过什么办法才能找到它们之间的关系呢?带着这些问题,请同学们分组研究,通过实验寻找答案。
教师布置任务并提出要求。
每个小组的桌上都有准备好的器材:等底等高空心的或实心的圆柱和圆锥、河沙或水、水槽等不同的器材,以及一张可供选用的实验报告单。四人小组的成员分工合作,利用提供的器材共同想办法解决问题,找出圆锥体积的计算方法。并可根据小组研究方法填写实验报告单。
学生小组合作探究,教师巡视指导,参与学生的活动。
3.教师用投影仪展示实验报告单
圆锥的体积实验报告单
第()小组记录人:
名称底面半径最初水面高度最后水面高度水面上升高度体积
圆柱
圆锥
结论
反馈信息。各小组交流实验方法和结果。
教师:你们采用了哪些方法研究等底等高的圆柱和圆锥之间的关系?通过实验,你们发现了什么?
方案一:用空心的圆锥装满水,再把水倒在与这个圆锥等底等高的空心圆柱形容器中,倒了三次,刚好装满圆柱形容器,因为圆柱的体积=底面积×高,所以圆锥的体积=13×圆柱的体积。
方案二:方法与一小组的方法基本一样,只不过装的是河沙。我们的结论和一小组一样,圆锥的体积也是这个等底等高圆柱体积的三分之一。
方案三:我们组与前两小组的方法不一样。我们是用两个同样大的水槽装同样多的水,在水面的位置分别作好标记,然后把这两个实心的圆柱和圆锥分别放入两个水槽中,在升高后的水面分别作好标记,算出两个水槽水面上升的高度,发现放圆柱形水槽的。水面上升的高度是放圆锥形水槽水面高度的三倍。因为两个水槽底面一样大也就是底面积相等,由圆柱的体积计算公式算出两个水槽中水的体积,发现圆锥的体积是圆柱的体积的三分之一。因此我们组得出的结论是:圆锥的体积是与它等底等高圆柱体积的三分之一。
教师:三个小组采用的实验方法不一样,得出的结论都一样。老师为你们的探索精神感到骄傲。
教师把学生们的实验过程用小黑板演示一遍,让学生再经历一次圆锥体积的探究过程。
4.公式推导
教师:圆柱的体积怎样计算?圆锥的体积又怎样计算?
教师引导学生理解只要求出与这个圆锥等底等高的圆柱的体积,再乘以三分之一,就得到圆锥的体积。
板书:圆柱的体积=底面积×高
V=S×H
↓〖4↓〖6↓
圆锥的体积=13×底面积×高
V=13×S×H
教师:圆柱的体积用字母V表示,圆锥的体积也用字母V表示。怎样用字母表示圆锥的体积公式?
抽学生回答,教师板书:V=13SH
教师引导学生理解公式,弄清公式中的S表示什么,H表示什么。
要求学生阅读教科书第39页和第40页例1前的内容。勾画出你认为重要的语句,并说说理由。
5.拓展
教师:是不是底和高不相等的圆锥体积也是圆柱体积的三分之一呢?我们来做个实验。
教师利用学生的实验器材进行演示。
用两个等底不等高的圆柱和圆锥装水;再用两个等高不等底的圆柱和圆锥装水,两次结果都没得到圆锥体积是圆柱体积的三分之一,进一步让学生体会等底等高的含义。
6.运用所学知识解决问题
教学例1。
一个铅锤高6CM,底面半径4CM。这个铅锤的体积是多少立方厘米?
学生读题,找出题中的条件和问题。
引导学生弄清铅锤的形状是圆锥形。
学生独立解答。抽学生上台展示解答情况并说出思考过程。
三、拓展应用,巩固新知
1.教科书第42页第1题
学生独立解答,集体订正。
2.填一填
(1)圆柱的体积字母表达式是(),圆锥的体积字母表达式是()。
(2)等底等高的圆柱的体积是圆锥体积的()倍。
抽生回答,熟悉圆锥的体积计算公式。
3.把下列表格补充完整
形状底面积S(M2)高H(M)体积V(M3)
圆锥159
圆柱160.6
学生在解答时,教师巡视指导。
4.教科书第42页练习九第2题
分组解答,抽生板算。教师带领学生集体订正。
5.应用公式解决实际问题
教师:现在我们再来帮助这两个同学解决他们的难题。
要求学生独立解答新课前买蛋糕的问题。
抽学生说出计算的结果。明白两个蛋糕的体积一样大,因此买两种形状的蛋糕都可以。
教师引导学生明白生活中的许多现象中都藏着数学问题,只要留心观察就能得出结论。这节课的学习中,你都有哪些收获?有关圆锥体积的知识还有哪些不清楚的?
教学内容:
教材第11~17页圆锥的认识和体积计算、例1。
教学要求:
l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。
2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。
3.培养学生初步的空间观念和发展学生的思维能力。
教具准备:
长方体、正方体、圆柱体等,根据教材第167页自制的圆锥,演示测高、等底、等高的教具,演示得出圆锥体积等于等底等高圆柱体积的 的教具。
教学重点:
掌握圆锥的特征。
教学难点:
理解和掌握圆锥体积的计算公式。
教学过程:
一、铺垫孕伏:
1. 说出圆柱的体积计算公式。
2. 我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第16页插图)。这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)
二、自主探究:
1.认识圆锥。
我们在日常生活中,还见过哪些物体是这样的`圆锥体,谁能举出一些例子?
2.根据教材第16页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。
3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。
(1) 圆锥的底面是个圆,圆锥的侧面是一个曲面。
(2) 认识圆锥的顶点,从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示出这条高)提问:图里画的这条高和底面圆的所有直径有什么关系?
4.学生练习。
口答练习三第1题。
5.教学圆锥高的测量方法。(见课本第17页有关内容)
6.让学生根据上述方法测量自制圆锥的高。
7.实验操作、推导圆锥体积计算公式。
(1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第18页上面的图)
(2)让学生猜想:老师手中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系?
(3)实验操作,发现规律。
在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的 。
老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?
(4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的 。
(5)启发引导推导出计算公式并用字母表示。
圆锥的体积=等底等高的圆柱的体积13=底面积高13
用字母表示:V= 13 Sh
(6)小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么?为什么要乘以 13 ?
8.教学例l
(1)出示例1
(2)审题后可让学生根据圆锥体积计算公式自己试做。
(3)批改讲评。注意些什么问题。
教学目标:
1、通过动手操作参与实验,发现等底等高的圆柱体和圆锥体之间的关系,从而得出圆锥体的体积公式。
2、能运用公式解答有关的实际问题。
3、渗透转化、实验、猜测、验证等数学思想方法,培养动手能力和探索意识。
教学重点:通过实验的方法,得到计算圆锥体积的公式。
教学难点:运用圆锥体积公式正确地计算体积。
教学过程:
一、创设情境,引发猜想
在一个闷热的中午,小白兔买了一个圆柱形的雪糕,狐狸买了一个圆锥形的雪糕,这两个雪糕是等底等高的。这是狐狸要用它的雪糕和小白兔换。你觉得小白兔有没有上当?如果狐狸用两个雪糕和小白兔换你觉得公平吗?假如你是小白兔,狐狸有几个雪糕你才肯和它换呢?把你的想法与小组的同学交流一下,再向全班同学汇报。
小白兔究竟跟狐狸怎样交换才公平合理呢?学习了圆锥的体积后,就会弄明白这个问题。
二、自主探索,操作实验
1、出示学习提纲
(1) 利用手中的学具,动手操作,通过试验,你发现圆柱的体积与圆锥体积之间有什么关系?
(2) 你们小组是怎样进行实验的?
(3) 你能根据实验结果说出圆锥体的体积公式吗?
(4) 要求圆锥体积需要知道哪两个条件?
2、小组合作学习
3、回报交流
结论:圆锥的体积是等底等高的圆柱体积的1/3。
公式:V=1/3Sh
4、问题解决
小白兔和狐狸怎样交换才能公平合理呢?它需要什么前提条件?
5、运用公式解决问题
教学例题1和例题2
三、巩固练习
1、圆锥的底面积是5,高是3,体积是()
2、圆锥的底面积是10,高是9,体积是()
3、求下面各圆锥的体积.
(1)底面面积是7.8平方米,高是1.8米.
(2)底面半径是4厘米,高是21厘米.
(3)底面直径是6分米,高是6分米.
4、判断对错,并说明理由.
(1)圆柱的体积相当于圆锥体积的3倍.( )
(2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2 :1.( )
(3)一个圆柱和一个圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米.( )
四、拓展延伸
一个圆锥的底面周长是31?4厘米,高是9厘米,它的体积是多少立方厘米?
五、谈谈收获
六、作业
1、学生通过自己的实验,非常顺利地得到等底等高的圆柱和圆锥体积之间的关系,推导出来圆锥的体积计算公式。原因之处有:(1)猜想:发挥学生的空间想象,使学生初步建立圆锥与圆柱体积之间的关系,教师预设学生可能粗略地知道有“三分之一”这一关系,“那么三分之一这一关系怎样推导呢”引起以下怎样推导圆锥的体积这一过程。
(2)在推导过程中,带着思考题(思考题实际就是学生实验的过程),让学生带有目标进行实验,让学生更有目的性,也非常方便,有操作性。
(3)学具准备充分,各小组选择水、沙子,增强趣味性,主动性,积极性高。
(4)公式推导完之后的一个反例子(出示一个非常大的圆柱和一个非常小的圆锥),让学生明确并不是所有的圆锥的体积都是圆柱体积的三分之一,从而强调了等底等高。
2、练习题由浅入深,判断题主要是要加深学生对概念、公式的运用和理解,第2题是书上的一组题,为提高效率只列式不计算,这三道题分别是告诉底面积和高、底面半径和高、底面直径和高,把几种类型都呈现出来。最后一题是动手实践题,一要考察学生的公式运用情况,二要考察学生的解决实际问题的'能力及策略,虽然没做几道题,但我觉得:解决问题比什么都重要。
3、本来想用不等底、不等高的圆柱和圆锥参与实验,考虑到可能会得出错误结论而影响体积公式的推导,所以把这一环节省去。设计了一组大的等底等高的圆锥和圆柱,让学生明确不管大小,只要等底等高就有3倍这样的关系。
4、时间分配上不到位,例题的处理中,考虑到本节的重点是理解公式并运用公式,所以没花多的时间,由于数字教大,部分学生没做完。
一、教材分析
圆锥的体积这部分教学内容是属于小学数学空间与图形的领域.这部分内容的教学是在圆柱体体积教学的基础上进行的,教学时应加强学生动手操作、观察等活动让学习经历探索知识的过程,培养学生自主解决问题的能力,从而加强学生对所学知识的深刻理解.本节课的内容对今后学生学习立体图形有着重要的作用.
二、教学过程
(一)引出课题
1、师:同学们,看一看祝老师手中拿的是什么?
生:这是一个圆锥体.
2、师:你们能不能用以前的办法求出这个圆锥体的体积呢?
生:可以,我们可以用排水法来求出它的体积.
师:如果是一个很大的一个圆锥体还用这种办法,会怎样?
生:能求出来但会很麻烦.
师:很好.那么我们今天就共同研究求圆锥体体积的办法.(板书课题)
(二)实验探究推导公式
1、师:同学们,想求圆锥体的体积它会与哪些图形有关呢?
生:圆柱体
2、师:请同学们拿出学具,选择能够推导出圆锥体体积公式的学具并把你们的发现记录下来.(小组合作)
学生汇报:我们组选择一个圆锥体、一个圆柱体和一些水进行实验.我们发现圆柱体的体积是圆锥体体积的5倍多一些.
师:其他种和他们一样吗?
生:不一样.
师:谁还愿意汇报.
生:我们小组选择了一个等底等高的圆锥体、圆柱体和一些大米进行实验我们发现圆柱体的体积是圆锥体体积的3倍.
生汇报:我们小组也选择了等底等高的圆锥体圆柱体和一些细沙进行实验.我们把细沙装满圆锥体后倒入和它等底等高的圆柱体内,正好倒了三次没有剩余.我们得出圆柱体的体积是圆锥体体积的3倍
2、师:为什么你们在实验的时候都用圆锥体和圆柱体,得到的是两种不同的结论呢?
生:因为第一组用的不是等底等高的圆柱体和圆锥体所以得到的结论和我们两组不同。
3、师:只有在等底等高的前提下,圆柱体和圆锥体的体积存在这样的关系。即圆锥体的体积等于圆柱体体积的三分之一。如果用字母V来表示圆锥体的体积,s表示它的底面积,h表示它的高。V=1/3sh。
(三)巩固练习
1、判断
(1)圆柱体的体积是圆锥体体积的3倍。 ( )
(2)圆柱体的体积大于与它等底等高的圆锥体的体积。 ( )
(3)圆锥体的高是圆柱体的高的3倍,它们的体积相同。 ( )
2、解决问题
(1)有一个圆柱体它的体积是36立方厘米,与它等底等高的圆锥体是多少?
(2)有一个圆锥体沙堆,底面积是18平方米,高6米求沙堆的体积?
(3)一个圆锥体的体积是30立方分米,底面积是20平方分米,求它的高是多少分米?
三、教学反思
这节课上,我以高昂的激情,丰富的执教经验,幽默风趣的语言,充分调动了学生的学习情趣,学生的学习积极性得到了充分的发挥。真不失为一节让人回味的好课。
1、难点分散。
针对学生对圆锥体刚刚有了初步的认识,又有了对圆柱体体积的计算的基础,对圆锥体的体积的计算没有充分的认识。教者采用了直观的导入:出示一个圆锥体,提问:“你认识这个物体吗?谁能用以前的学习方法,求出它的体积?”学生回答后。教者紧接又发问:“如果是较大的物体怎么办?”一石激起千层浪,引人入胜的问话,强烈的激起了学生的求知欲,学生进入了学习的最佳境界。
2、导入的新颖。
情境的创设使学生进入了有序的思维境地,教者将问题抛给了学生,放手让学生用手中的学具自主地实验。在实验中发现、在发现中探索、在探索中交流,给学生的思维发展创设了空间,学生的观点和意见得以自由的发表。教师的适时的点拨,解决了这节课的难点,即:必须是等底等高的圆锥和圆柱体,它们的体积关系才存在----等底等高的圆锥体的体积是圆柱体的三分之一。
3、教学手段和练习配套。
教者用考一考、请听题等手段对本节课的内容进行强化。一方面,使学生的情绪围着教者的教学目标转,学生的学习兴趣极高,每个人都能进行有效的思维;另一方面,从学生的认知过程看,符合了直观——抽象——概括的认知过程,按照学生的认知规律组织教学。
4、学生一直处在积极的学习状态中,整个教学过程注重了学生参与学习的积极性,让学生重参与公式的推导过程而不是结论,每个学生的学习兴趣的调动是这节课的一个亮点。学生始终处在思维十分活跃的状态中,高潮迭起,一波连着一波,让人体会到了新课标下的新课堂的教学魅力。教者的教学魅力尽现于此,得到了淋漓尽致的发挥。
教学目的:
使学生系统掌握关于圆柱和圆锥的基础知识,进一步了解圆柱和圆锥的关系,熟练运用所学公式计算解答实际问题;
教学准备:
幻灯片、电脑制图
教学过程:
一。 出示课题,引人复习内容;
1.同学们,今天这节课,我们要进行圆柱体和圆锥体体积的复习;
板书课题
2.圆柱体的体积怎么求?
板书:V圆柱=Sh
3.圆锥体的体积怎么求?
板书:V圆锥=1/3 Sh
4.公式中的 s、h分别表示什么?1/3表示什么?
小结:求圆柱体和圆锥体的体积,首先要正确应用公式。
板书:1.正确应用公式
当题目中没有直接告诉我们底面积,只给出底面的半径、直径或周长时,求它们的体积必须先求出什么?
二。 基础练习
根据已知条件求圆柱体和圆锥体的底面积(幻灯出示)
计算这些形体的体积:
(1)S底=1.5 平方米 h=5 米 求V圆柱
(2)S底=1.5 平方米 h=5 米 求V圆锥
(3)r=10分米 h=2 米 求V圆柱
(4)C=6.28米 h=6 米 求V圆锥
(1)、 (2)两题条件相同,所求不同;
板书:2. 圆锥体积一定要乘 1/3
(3)、 (4)两题都要先求出底面积;
板书:3. 单位名称要统一
三。 实际应用练习:
我们还可应用到生活中去解决一些实际问题:(幻灯出示)
1.一根圆柱形钢材长2米,底面周长为6.28厘米,如果1立方厘米钢重8克,100根这样的钢材重多少千克?
默读后问同学:做这道题前有没有准备工作要做?(单位要统一)
2.一个圆锥形麦堆,底面直径4米,高1.5米,按每立方米麦重700千克算,这堆麦重多少千克?
默读后问同学:要注意麦堆是什么形状?
请两位同学板演,其余在本子上自练;
3.小结:在解这两题时都用到了什么计算?
四。 提高练习:
(幻灯出示)在一只底面半径为30厘米的圆柱形水桶里,放入一段底面半径为10厘米的圆锥形钢材,水面升高了5厘米,这段钢材高为多少?
(电脑出示图案)观察水面变化情况,求什么?
1.钢材是什么形状?求圆锥体的高用什么方法?h=3V/S,3V表示什么?
2. S可以通过哪个条件求?( r=10厘米)
3.体积是什么呢?(电脑屏幕逐步演示)
(1)当钢材放入时水面上升,取出时水面下降,和什么有关?
(2)放入时水面为什么会上升?
(3)圆锥体占据了水桶里哪一部分水的体积?
(4)上升的水的体积等于什么?
(5)求圆锥形钢材的体积就是求什么?
(6)求这部分水的体积可通过哪些条件求?(r=30厘米,h=5厘米)
(7)板演,同学自练;
五。 圆柱体、圆锥体之间的关系是很密切的,下面我们来研究一下:(电脑出示画面、公式)
1.当圆柱体与圆锥体等底等高时,圆柱的体积是圆锥体积的3倍;(逆向)
2.当圆柱体与圆锥体体积相等,底面积相等时,圆锥的高是圆柱的3倍;
3.当圆柱体与圆锥体体积相等,高也相等时,圆柱的底面积是圆锥底面积的1/3,圆锥底面积是圆柱底面积的3倍。
六、总结:
这节课我们复习了什么?