四年级下册《平均数》数学教案【最新3篇】

作为一名教学工作者,时常需要编写教案,教案是实施教学的主要依据,有着至关重要的作用。那么问题来了,教案应该怎么写?下面是的小编为您带来的四年级下册《平均数》数学教案【最新3篇】,您的肯定与分享是对小编最大的鼓励。

三年级数学《平均数》教案 篇1

一、教学内容:

人教版《义务教育课程标准实验教科书数学》三年级下册P42、43页《平均数》

二、教学准备:

直尺、三角板,学生按矮到高的顺序坐好。

三、教学目标与策略选择:

以往我们把《平均数》这节课当成是一节应用题的课,侧重读题、分析、计算;从新课程标准出台以后,列入统计与概率的范畴,重视平均数意义的教学,更注重学生估计意识、猜想意识和推理能力的发展。学生已有了相当丰富的统计知识,对于“平均数”这个概念已有所接触,如测试中的“平均分”等。但大部分学生还不能准确理解“平均数”的意义。为此,确定以下教学目标:

1、通过观察、比较,理解平均数不是一个具体的数(实际的数);

2、在师生、生生的交流互动中,让学生知道平均数是有一定范围的,培养学生的估计、猜想意识,并产生探究数学知识的积极情感;

3、学生能掌握求平均数的方法:

(1)移多补少;

(2)先求总数再平均分等;

4、体现总体与样本的关系。

鉴于以上的目标定位,本节课重在学生的体验、参与。在学生互动中,使学生感受够到生活中处处有数学,并会从实际生活中提出数学问题,运用不同的方法加以解决,同时在学生的合作中初步感受统计知识。为此,主要采取了以下教学策略:

1、以“情”、“趣”开路。

2、创设生动的生活情境,提供丰富的生活化材料,唤起学生已有的知识经验。

四、教学流程设计及意图:

教学流程

设计意图

一、活动导入,引出平均数的意义。

1、创设情境:比身高。

(1)第一次比较。师:今天进行男女同学比身高。先请--(一个男的,一个女的同学;男的同学比女的同学明显高一点)

(2)第二次比较。师再请两位同学。一位男同学,一位女同学。(男同学略高于女同学)现在是男同学高还是女同学高?

(3)第三次比较。师:看来这么一比,大家一看就知道了。继续请上两位同学(女生明显高于男生)

师:你觉得这3个男生与这3个女生比,是男同学高还是女同学高?怎么比呢?生:......

(4)第四次比较。师:如果再请上一位女生(比平均水平稍矮一点)呢,是男同学高,还是?

师:如果不请男同学上来了,你觉得还有其它比较的办法吗?

2、同桌学生讨论。生:求出几个同学的平均数。

3、现场测量台上同学的身高。

4、学生尝试练一练,指名板书。

5、比较结果。是男同学高,还是女同学高。

6、小结:看来平均数(板书课题)还真能帮肋我们解决一些问题。

二、延伸拓展,形成统计观念。

1、感悟平均身高。师指着平均身高:这个身高是你们当中××同学的身高吗?那它是什么?

2、全班的平均身高。师:现在要知道全班同学的平均身高,怎么办?

生:先把所有的身高加在一起,再除以有40人。

师:是个办法,能解决这个问题。如果想知道全校四年级同学的平均身高,有什么办法?

生:......

3、选取样本。师:但是现在在课堂里没办法解决这个问题。有没有更好的办法呢?

(1)学生参考选取第一排或第五排。

(2)选取第一组的学生比较有代表性。

4、估计。

师:你们先估计一下,第一组5个同学的平均身高是多少?

生:......(不会比最大的大,比最小的小)

5、学生计算。

6、进一步感悟平均数。

师:是××同学的身高吗?我们可以推测全班的同学身高,全校四年级同学的身高,甚至是更大范围的四年级同学的平均身高。

7、小结方法。

师:我们来观察一下,刚才我们是怎样求平均数?

生:先求总数(板书),除以人数,等于平均身高。

三、应用提高,深化统计观念。

1、举例。师:其实生活除了求平均身高外,还有很多地方用到平均数,能举个例子吗?......

2、你觉得有危险吗?

小朋友说:我身高140厘米,在这里游泳不会有危险。

2、猜猜看:

3、根小棒,平均3根小棒,平均每根长10厘米每根长15厘米

(1)猜测。师:如果从第一个袋子里拿一根(标上序号),第2个袋子里也拿一根,哪个袋子里拿出的长一些?

(2)举例。师:能举个例子吗?同桌商量一下。

(3)汇报。

3、变式练习。

(1)在龙港万科印业公司的印刷车间,第一天印39万张商标,第二天、第三天共印87万张,他们平均每天印多少万张?

①(39+87)÷2=63(万张)

②(39+87)÷3=42(万张)

(2)在龙港万科印业公司的印刷车间,第一天印39万张商标,第二天上午印22万张,下午印23万张。他们平均每天印多少万张?

①(39+22+23)÷2=42(万张)

②(39+22+23)÷3=28(万张)

质疑:为什么两个数要除以3?三个数相加要除以2呢?

小结:像这样的天数、人数,我们可以称为份数。(平均每天的张数、平均身高可以称为平均数)

4、读信息,了解最新动态,解决实际问题。

(1)你在这幅图上了解到哪些信息?根据这些信息,你能提出什么数学问题?

(2)计算前,你先估计一下,第二十五届到第二十八届平均每届获金牌的块数?并介绍你是怎么估计的?

(3)计算--课件验证。

(4)根据这幅图的发展趋势,你能预测一下20xx年能获多少块?

四、全课总结。

以“比身高”作为本节课学生的学习主题,通过现场简单的两人比较,四人,六人,七人的比较,使学生在观察中发现比较的量在不断的变化,结果也不断在变化,在矛盾迭起的活动中,不断寻找平衡,寻求合理的比较方法。

通过教师言语的引导,制造在大范围的情况下,求平均身高这么一个矛盾,怎么办?促使学生经历寻求“样本”的过程,致使合理的解决这个问题。

在本节课的练习设计中,突出对平均数意义的理解,体现开放性,变通性,实效性。促进学生的思维不断深入、发展。

五、教学片断实录:

片断一:

开场白:今天我们进行一场比赛--比身高。板书:男、女

师:同学们的想法都很好!但是今天先进行男女 同学比身高。我先请--(一个男的,一个女的同学;男的同学比女的同学明显高一点)

师:你们说谁比较高?

生:男同学。

师再请两位同学。一位男同学,一位女同学。(男同学略高于女同学)现在谁比较高?

生:还是男同学。(男同学似乎很得意)

师:看来这么一比,大家一看就知道了。继续请上两位同学(女生明显高于男生)

此时学生大笑。

师:你们笑什么呢?

生:这个男同学这么矮?

师:你们听过一句话吗,浓缩就是--精华。更何况,你们现在正是长身体的时候,过几年后,他可能会长得比你们高呢。

师:你觉得这3个男生与这3个女生比,是男同学高还是女同学高?

生:是男同学。

生:是女同学。

生:一样高。

师:怎么比呢?

生:把男同学高的部分“切下来”补到矮的身上,女同学也用这种办法,再比较。(还没等这位同学说完,其它同学就大笑,一致认为这是不可能的。)

生:可以把男同学或女同学的身高加起来,再比较。

另一学生似乎心领神会:找一个男生和一个女生比较,求出相差数,再找第二、第三个男生和女生比,最后比一比相差数的办法。

师:如果再请上一位女生(比平均水平稍矮一点)呢,是男同学高,还是?

生:女同学或不公平。

生:还得再叫一位男生上来。

师:如果不请男同学上来了,你觉得还有其它比较办法了吗?

同桌讨论。

生:求出男、女生的平均身高。

六、教学反思

1、情境的设置不应仅仅起到“敲门砖”的作用,也即仅仅有益于调动学生的学习积极性,还应在课程的进一步开展中自始至终发挥一定的导向作用(郑毓信语)。开课这一情境的创设,并不仅仅是为了引出平均数这一概念。从第一次、第二次简单的进行比较,学生一看就明白,当出现三人比较时,学生开始犯难了,有的学生觉得男生高,有的觉得女生高,有的认为一样高等,出现意见不一,怎么办?有的学生想到了用“切”的办法(当然这种方法不近合理,但也是学生对移多补少的形象化解释)、求和比较的方法(这一方法为求平均数打下铺垫)、还有的学生受到“移多补少”方法的影响,想出了求相差数的方法等,把学生的思维不断引向深入。通过第四次身高的比较,出现不合理的因素,逐步把学生的视线引向平均数,从而学生自发解决了求平均身高,也初步掌握了求平均数的方法。

2、新课程倡导用具体的、有趣味的、富有挑战性的素材引导学生投入数学活动。在“比身高”的情境中,让学生在一次次的观察、比较中迎接挑战,这样一个活动,在平时课堂中可以信手拈来的一个情境,在学生的争论中完成数学化的过程,并不需要花费过多的时间。在这种以情、趣开路的情境中,学生学得主动。

《平均数》 教案 篇2

教学内容:

教学目标:

1.通过观察、比较、计算等方法,理解平均数含义。

2.引导学生探索求平均数的一般方法。

3.理解平均数的特征,体验平均数的价值。

教学重点:

理解平均数的含义。

教学难点:

理解平均数的特征。

教学过程:

一、谈话引入

二、探究

1.平均数的意义

出示:某工厂两个生产小组进行制作海宝比赛。

每位工人1时加工情况如下:

第一组

第二组

1)你认为哪一组工人获胜?

2)比总数公平吗?怎么比比较合理?

3)你有什么办法能知道平均每人加工的个数?(揭题:平均数)

a.用移多补少(根据学生的回答演示课件)

b.列式计算

(7+8+6)3=7(个)

(3+7+4+10)4=6(个)

4)观察:6是哪个工人加工的个数?

5)归纳:在人数不相等的情况下,比哪一组的成绩好,一般比平均结果比较公平。

2.平均数的概念 出示条形统计图:上海世博会9月1日至9月5日参观人数统计图。

1)尝试计算

2)观察交流:什么是平均数?

3)归纳:将一组资料中数值的总和除以这组数值的个数,所得到的数叫做这组数值的平均数。

3.平均数的计算方法:平均数=总和个数

4.平均数的特征 出示10月1日至10月5日参观人数统计图

1)估计平均数

2)计算、交流、分析

3)观察讨论:观察一下这几个平均数,你发现了什么? 归纳:也就是说,一组数据的平均数,它的大小是在这一组数据的最小值与最大值之间。

4)思考:9月份5天的'平均数代表什么?是某一天入园的人数吗?你怎样理解这个数?10月份的呢?这两个39万人的意义相同吗?

归纳:所以说平均数并不代表某一个具体的数量,它指的是一组数据的总体水平。

4.小结:通过刚才的学习,

我们知道了什么叫平均数,也知道通常情况下可以用总和除以个数来计算平均数,一般情况下,一组数据的平均数,它的大小是在这一组数据的最小值与最大值之间;平均数并不代表一个具体的数量,它指的是一组数据的总体水平。

《平均数》教案 篇3

教学目标:

1、体会平均数可以反映一组数据的总体情况和区别不同组数据的总体情况这一统计学上的意义。

2、使学生认识统计与生活的联系,发展学生的实践能力。

3、巩固求平均数的计算方法。

教学过程:

一、复习

1、师出示一杯水,告诉学生这一大杯水大约600克,而后把这杯水分别到入4个杯子中(每个杯子的水不同)提出:你们能求出这4个杯子的水的平均重量吗?

2、学生动手解决,并交流解决的方法。

二、创设问题情景,引导探究。

1、六一节,老师带了许多糖果想送给大家吃,老师给奋飞组6人共分36块,给前进组8人共分了40块,给蓝天组5人共35块,你们认为哪一组的同学分到的糖果多?怎么解决?

(1)组织交流解决的方法。

(2)小结:象这种情况下,每组的人数不一样,不能直接拿总数来比较,而是要求出每组同学的平均数来比较。

2、出示情景图,告诉同学穿兰色衣服的是开心队,穿黄色衣服的是欢乐队,引导学生观察后猜一猜:你认为哪一队的身高高?并说说理由。

3、出示统计表,组织学生收集有关数据,根据统计表估一估,欢乐队和开心队的平均身高分别是多少?并说说估的方法。

4、同桌合作,一人求欢乐队的平均身高,另一个求开心队平均身高,后比较哪一队高?

5、组织交流计算的方法与结果。

6、组织讨论:从刚才的这件事,你有什么发现,并小结:平均数能较好地反映一组数据的总体情况。

三、拓展与应用

说说生活中还有哪些事要通过求平均数来解决一些问题。

四、小结:通过本节课的学习,你有什么收获,有什么问题需要帮助的吗?

五、作业练习十一4、5

教学反思:

一键复制全文保存为WORD
相关文章