学生是数学学习的主人,是数学课堂上主动求知、主动探索的主体。教师是数学学习的组织者、引导者和合作者。这里给大家分享一些关于五年级下册数学教案,方便大家学习。这里是编辑征途帮家人们找到的10篇五年级下册数学教案的相关文章,仅供参考,希望对大家有一些参考价值。
教学内容:
本节内容属北师大版小学数学五年级下册第四单元“长方体(二)”最后一节的内容:有趣的测量(求不规则物体的体积)。
教材分析:
本节课是在学生已经掌握了长方体和正方体的认识,长方体和正方体的表面积、体积的知识,了解了容积的内容的基础上呈现的。要使学生通过观察、比较,掌握不规则物体的体积的求法,拓展了学生的知识面,渗透了转化的思想。
学情分析:
本班级学生,大部分学习认真、踏实、自觉,基础扎实,好学上进,部分男生活泼好动,爱思考。对于探索数学问题有着极其浓厚的兴趣,喜欢自己动手解决问题。在他们身上还明显地存在着儿童的天性,好动、好奇等。对于本单元的知识,大部分学生掌握得比较扎实。
教学目标:
1、经历测量芒果、石头、水瓶的体积的实验过程,探索不规则物体体积的测量方法,渗透转化的思想。
2、掌握不规则物体的测量方法,并能测量不规则物体的体积。
3、在实践与探索过程中,尝试用多种方法解决实际问题,提高灵活解决实际问题的能力。
教学重点:
让学生掌握不规则物体体积的测量方法。
教学难点:
灵活运用“排水法”和“溢出法”解决实际问题。
教具准备:
魔方、芒果、圆柱体量杯、长方体水槽、石块、苹果醋若干瓶
教学过程:
一、 导入
1、同学们,周末老师在整理房间的时候,从柜子里发现了一个魔方,我特别喜欢。
从数学的角度来讲,魔方是一个什么样的物体?(正方体)
怎样求出这个正方体的体积呢?(板书:V正=a)
它的棱长是10cm,体积是多少呢?(1000cm)
2、除了正方体,你还会求哪些立体图形的体积?(板书:V长=abh)
3、像长方体和正方体这样,都能够直接通过公式求出它们的体积,这样的物体,我们把它们叫做“规则物体”。(板书:规则物体)
4、现在请同学们再观察老师手中的魔方,它还是正方体吗?(旋转一下)那它是什么形状的物体呢?
像这样,无法用语言准确地说出具体形状的一类物体,在我们的生活中随处可见,我们称它们为“不规则物体”。(板书:不)
5、现在这个魔方的体积是多少呢?(还是1000cm)你是怎么想的?(板书:转化)
【设计意图:我用正方体魔方引入,把本节课主要用到的数学思想渗透给学生,为后面的实验做铺垫,同时又可以激发学生学习的积极性。】
6、魔方是一个比较特殊的物体。再看,现在老师手中拿的这个芒果也是一个不规则的物体,我们能直接把它转化成规则的物体吗?
那它的体积是多少,又该怎样求呢?
这节课,我们就通过有趣的测量,共同来研究不规则物体的体积。
二、新授
(一)测量芒果的体积
1、你想怎样测这个芒果的体积呢?(学生汇报)
2、桌面上,老师为每个小组准备了两种测量工具:量杯和一个长方体容器。
你认为选择哪一种测量工具,能够很快地求出芒果的体积?为什么?(选择量杯,因为它有刻度)
3、这样做确实能比较快的求出芒果的体积,你来看(ppt演示)
量杯中装有一部分水,正好是300mL,这300mL指的是什么?(水的体积)
仔细观察,将芒果放入水中后,水面发生了怎样的变化?为什么水面会上升呢?那么,现在的400mL指的是什么?(水和芒果的体积)
现在,你知道芒果的体积是多少吗?
100是芒果的体积,它也是什么的体积?(上升的水的体积)
4、在刚才的实验中,我们借助量杯完成了一次转化。是将什么转化成了什么呢?(将芒果的体积转化成了上升的水的体积,也可以说是将不规则的芒果转化成了规则的圆柱体)
5、像刚才这样测量不规则物体体积的方法,我们把它叫做“排水法”。
【设计意图:教师引导学生观察第一个实验:用量杯和水试一试、测一测芒果的体积。学生通过讨论、交流观察等一系列的活动,让学生初步的明白应用转化的思想,可以把不规则物体的体积转化为上升部分的水的体积,也就是测不规则物体体积的基本方法。】
(二)测量石头的体积
1、现在老师也想进行一次测量,我想测的是这块石头的体积。
我应该选择什么工具来测量呢?为什么?(选择长方体容器,因为石头太大了)
2、用这个长方体容器怎样求出这块石头的体积呢?在小组内和你的同伴说一说。(讨论后,学生汇报)
3、在测量的时候应该注意什么?(强调:要从里面测量)
出示数据:长25cm,宽18cm,水面高度8cm。慢慢将石头放入水中,观察水面发生了什么变化?为什么?
这样放行不行(竖着)?为什么?(石头没有完全浸入水中)
石头已经完全浸入水中,此时水面的高度是10cm
4、你能根据屏幕上显示的数据计算出这块石头的体积吗?(学生动笔计算)
5、刚才,在我们的共同努力下,测得了这块石头的体积。
在这次实验中,我们又完成了一次转化,是将什么转化成了什么?(将石头的体积转化成了上升的水的体积,也可以说是将不规则的石头转化成了规则的长方体)
【设计意图:学生有了第一个实验的基础,教师调换实验用品进行第二个实验,把量杯换为长方体容器来进一步探索求不规则物体的体积。学生有了第一个实验的基础,会很容易的探索出把不规则物体的体积转化为可计算的长方体的体积,从而突破本节课的重难点。在这一环节中教师适时强调,测量时要把石头完全浸入水中,才能应用转化的思想求体积。】
6、你还有其他的方法能够测量出这块石头的体积吗?(出示“溢出法”和“排水法”的逆运用)
【设计意图:教师引导学生思考其他测量不规则物体体积的方法,从而让学生明白解决问题的方法的多样性。】
7、其实,早在20xx多年前,大物理学家阿基米德就曾经用过刚才同学们说到的方法帮助国王解决了一个难题,出示“数学万花筒”,学生读。
(三)测量苹果醋瓶的体积
1、现在你们想不想亲自测量一下不规则物体的体积?
机会就在眼前,每个小组的桌面上都有一瓶苹果醋。在大家动手之前,请你先猜猜看“这个瓶子的体积是多少?(净含量:260mL)
2、现在就动手来验证一下吧。将记录填写在实验报告单中。
实验报告单
长方体容器的长
长方体容器的宽
放入前
水面高
放入后
水面高
苹果醋瓶的
体积
25cm
18cm
【设计意图:新数学课程标准中强调,教学中“做”比“知道”更重要。数学活动课要把握好实践活动的时机,凡是能让学生自己设计的,就让学生亲自去发挥;凡是能让学生自己去做的,就让学生亲自去动手。】
3、在刚才的实验中,我们又完成了一次转化,谁能来说一说?
(四)总结
通过这几次的实验,我们发现:不管是“排水法”还是“溢出法”,实际上都是在完成一次转化,是将什么转化成什么呢?(将不规则物体转化成规则物体)
【设计意图:使学生明确“转化”思想的实质。】
三、质疑
看书 页,对于今天我们学习的知识,你还有什么不清楚的地方?
四、课堂练习
(一)填空
1、一个量杯水面刻度200mL,放入一个零件后,量杯水面刻度450mL,这个零件的体积是( )。
2、一个长方体容器装满水,底面长8dm,宽5dm,高3dm,放入一个不规则物体后,溢出30升的水,这个不规则物体的体积是( )。
3、一个长方体容器,从里面量长3分米,宽2分米,高5分米,里面装有水,水深3分米,如果把一块小长方体放入水中,小长方体的长是10厘米,宽8厘米,高5厘米,上升的水的体积是( )。
【练习目的:强化“转化”思想的实质。】
(二)解决问题
第一组
1、一个长方体容器,底面长4dm,宽2dm,放入一个石块后水面上升了0.5dm,这个石块的体积是多少立方分米?
2、一个正方体的容器,棱长20厘米,现装有深度为5厘米的水。在放入一个物体后,水面上升到8厘米,放入物体的体积是多少立方厘米?
【练习目的:通过对比练习,由直观到抽象,激发了学生的学习兴趣,提高了教学效率与效益。】
第二组
1、一个长方体容器,长20厘米,宽15厘米,高10厘米。将一块铁块放入容器中,装满水,再将铁块取出,这时容器中的水面高度是6厘米,这块铁块的体积有多大?
2、一个正方体容器装满水,当放入一个长方体后,容器中溢出了48升水,已知长方体长8分米,宽2分米,求高是多少厘米。
3、一个棱长为15厘米的正方体容器内水深8厘米,浸入一个不规则的钢块后,水面上升到距容器口3厘米处,这个钢块的体积是多少?
【练习目的:由浅入深,层层深入,采用小组合作的形式,让学生参与到教学全过程,增强学生的主人翁意识。】
五、全课小结
1、通过这节课的学习,你有什么收获?(学生汇报)
2、生活中有许多不规则的物体,我们可以把它们转化成规则的物体来计算出体积。在解决数学问题的时候,往往需要我们用一种变通的方法去思考。
3、拓展练习:那么,你能想办法测出一粒黄豆的体积吗?(学生汇报)
一粒黄豆非常小,把它放入水中,我们很难看出水面的升高情况,也就很难算出它的体积。我们可以先测量出一定数量的黄豆的体积,再除以黄豆的数量,就能得出一粒黄豆的体积了。
板书设计:
转化
有趣的测量:不规则物体的体积 规则物体的体积
V正=a 芒果的体积 上升的水的体积
V长=abh 石头 下降
瓶子 溢出
教学内容:
教科书P13例9 、P14练一练、P16练习三第1~3题。
教学目标:
1.使学生在解决实际问题的过程中,理解并掌握形如ax+bx=c的方程的解法,会列上述方程解决两步计算的实际问题。
2.掌握根据题意找出数量间相等关系的方法,养成根据等量关系列方程的习惯。
教学重点:
掌握列方程解应用题的`基本方法, 在理解题意分析数量关系的基础上正确找出应用题中数量间的相等关系。
教学难点:
能正确找出应用题中数量间的相等关系。
教学过程:
一、谈话导入
今天研究一个与颐和园有关的数学问题。
二、学习新知
1.P13例9
(1)指名读题 ,分析数量关系。
用线段图表示出题目中数量之间的关系吗?
学生尝试画图,集体交流。
根据线段图得到:水面面积+陆地面积=颐和园的占地面积
启发:这大题目中有两个未知数,我们设谁为x呢?
(2)列方程并解方程
指名学生列出方程,鼓励学生独立求解。
如果用x表示陆地面积,那么可以怎样表示水面面积呢?
追问:这道题可以怎样检验?
检验:A、72.5+72.53=290(公顷) B、217.572.5=3
(3)观察我们今天学习的方程,与前面的有什么不同?
小结:像这样含有两个未知数的问题我们也可以列方程来解答。
(4)学生独立完成P14练一练第1题
三、巩固练习
1.P14练一练第2题
教师引导学生找出数量关系式
陆地面积2.4-陆地面积=2.1
2.解方程
2x+3x=60
3.6x-2.8x=12
100x-x=198
师:这几道方程以例题中的方程有什么共同特点,解这一类方程时要先做什么?依据是什么?
3.根据线段图列出方程
4.解决实际问题:(列方程解)
(1)柏树松数共有750棵,柏树的棵数是松树的1.5倍,两种树各多少棵? 为什么选择松树的数量设为x呢?
(2)一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?
在做这道题时你认为应注意什么呢?
四、全课小结
这节课学习了列方程解决问题?
在解答这一类应用题时应注意什么?
五、课堂作业
P16练习三第2-3题
教学目标:
1、解决实际问题中的有关和、差、倍的数量关系。
2、初步学会设计一个未知数,列方程解答含有两个未知数的实际问题。
3、培养学生学会比较、分析、并能应用已学知识解决实际问题的能力。
教学过程:
一、复习
1、4x+5=54 3×2.1+2x=13.4 0.3x÷2=9 4(x+8)=20
2、学校科技小组的男生是女生人数的4倍,设女生有x人,男生有( )人,男女生共( )人。
3、学校图书组有女生x人,男生为女生的2.5倍,男生有( )人,男女同学共( )人。
4、果园里有桃树45棵,杏树的棵数是桃树的3倍,两种树一共有多少棵?
二、新授课
教学教科书第70页的例3。
1、 分析题目的已知条件和问题。
2、分析本题的数量关系。
请学生说出数量关系,教师板书。
陆地面积 + 海洋面积 = 地球表面积
教师:这道题目中有两个未知数,而这两个未知数之间存在着倍数关系。我们在解题时,只要设其中的一个未知数为x,而另一个未知数就可以用这个未知数来表示,为了解方程方便,通常情况下,设一倍数为x。
3、列方程解应用题。
解:设陆地面积为x亿平方千米,海洋面积就为2.4x亿平方千米
x + 2.4x = 5.1
(1 + 2.4)x = 5.1
3.4x = 5.1
3.4x÷3.4 = 5.1÷3.4
x=1.5
提问:1.5表示什么?(1.5表示陆地面积是1.5亿平方千米)
那海洋面积该怎样求呢?
一种:5.1-1.5=3.6(亿平方千米)
另一种:2.4 x=2.4×1.5=3.6(亿平方千米)
答:陆地面积是1.5亿平方千米,海洋面积是3.6亿平方千米。
引导学生进行检验。
三、巩固练习
1、甲乙两堆货物共重60吨,乙的重量甲的3倍,甲乙两堆货物各种多少吨?
2、苹果重量是梨子重量的4倍,梨子比苹果少600千克,梨子和苹果各重多少千克?
3、练习13 (4、6、7题 用方程解)学生独立完成,教师评讲
小结:今天你学了什么?有什么收获?(小组同学相互交流)
四、作业: 练习十三(5 —10题)
1.由几个大小相同的小正方体摆成的立体图形,从同一个方向观察,看到的图形可能是相同的,也可能是不同的。
2.根据从一个方向看到的图形摆立体图形,有多种摆法。
作业:教材第3页练习一第1、2题。
第一单元:观察物体
第二课时:从多个角度观察立体图形
教学内容:教材P~例1、例2及练习一第、题。
教学目标
知识与技能:根据图形推测拼搭的方式,引导学生简化过程,培养学生的空间想象力和思维能力。
过程与方法:通过动手操作,自主探究,解决由平面图形到立体图形的转化问题。让学生自己拼摆,得出结论,激发学生对数学的求知欲及探求数学知识的
兴趣。
情感、态度与价值观:培养学生从多个角度观察物体的能力,通过思考和分析,掌握从不同角度观察立体图形的情况。
教学重点:
经历观察过程,根据从正面、上面和左面看到的物体的三视图,推测出小正方体的拼搭方式。
教学难点:
培养学生的空间想象力和抽象思维能力。
教学方法:
启发式教学法与直观演示法。
教学准备:
若干个小正方体、多媒体。
教学过程:
一、创设情境,激趣导入
上节课,我们学习了根据从某个角度观察得到的平面图形,拼搭出立体图形的方法,这节课,我们再来研究怎样根据从多个角度观察得到的三视图来拼搭立体图形。教师出示从正面观察某立体图形得到的平面图形,如。
请同学们猜一猜,它是由几个小正方体组合而成的,并说明理由。
学生纷纷发表意见,有的说是2个,有的说3个……
师:看来要了解物体的真面目只看一面是不够的,今天我们就一起来探索根据三视图摆立体图形。
二、探究体验,经历过程
1.投影出示例2。
2.分小组探究。
学生分成若干个小组,每个小组准备若干个小正方体木块。
师:现在每个小组都有若干个小正方体木块,请你们自主探究一下,怎样拼搭,能拼搭成符合兰兰看到的三视图的立体图形,看一看哪个小组最先完成并说一说是怎样摆的。
学生分组探究,教师巡视指导。
3.探究结果汇报。
我们拼搭的图形为。因为兰兰从正面看得到的平面图形和从左面看得到的平面图形都是由2个小正方形组成的长方形,因此说明这个立体图形只有一层,并且它的前面是2个小正方体,它的左面也是2个小正方体。而从上面看是两排,它的前排是2个小正方体,第二排是一个小正方体并且应该在左边,因此我们组拼成了上面的图形。
师生共同评价总结:各小组都能积极地思考,动手动脑解决问题,并说出了自己的思考过程。
3.即时练习。
指导学生完成教材第2页“做一做”。
学生根据题意自行操作,教师巡视及时发现学生在拼摆中存在的问题,并进行及时指导。
三、巩固练习
1.第3题:呈现了从不同方向观察一个立体图形得到的三个图形,让学生用正方体搭出相应的立体图形。教师可以放手让学生自主探究,然后组织全班同学讨论并流拼搭的方法。注意引导学生有步骤、简洁地进行操作。
2.第4题:先让学生独立解决问题,再组织交流。
对于第(2)小题,学生完成练习后,教师让学生展示不同的`摆法,通过交流,使学生进一步体会只看到一面是无法确定物体的形状。
3.第5题:可以让学生先直接作出判断,再组织交流。
4.第6题:让学生根据从一个方向看到的图形,判断所观察的物体是什么立体图形,使学生进一步认识到:不能只根据一个方向看到的形状,就确定是什么立体图形。如果搭成的图形从正面看,最少需要3个正方体,还可能是4个、5个……
教师可以让学生说一说或在方格纸上画出,从不同的方向观察自己所搭的立体图形得到的图形;还可以让学生小组活动,由一名学生增加所给的条件,使其他人能准确地摆出这个立体图形。
5.第7题:先让学生独立思考,并根据题意要求动手摆一摆,以此来验证自己的想法。在学生独立思考的基础上,教师组织学生进行全班交流。
四、课堂小结,梳理提升
这节课,我们研究了根据物体的三视图拼搭立体图形,同学们都能积极地动手参与,积极地思考。在按照物体的三视图进行拼搭时,先根据平面图分析出要拼搭的立体图形共有几层.要拼搭的立体图形共有几排,再根据平面图形确定每层和每排的小正方体的个数和位置。
板书设计:
从多个角度观察立体图形
先根据平面图分析出要拼搭的立体图形有几层;
然后确定要拼搭的立体图形百几排;
最后根据平面图形确定每层和每排的小正方体的个数。
作业:教辅相关练习。
第二单元:因数与倍数
教材分析
本单元是在学生学过整数的认识、整数的四则计算、小数、分数的认识等知识的基础上展开教学的。本单元的内容主要包括因数和倍数,2、5、3的倍数的特征,质数和合数等知识。通过这部分内容的学习,既可以让学生在前面所学的整数知识基础上进一步探索整数的性质,又有助于发展他们的抽象思维。这些知识的学习是以后学生学习公倍数与公因数、约分、通分、分数四则运算等知识的重要基础。
学生已经学过整数的认识、整数的四则计算、小数、分数的认识等知识,但本单元的知识属于“数论”的初步知识,概念比较多,有些概念比较抽象,概念的前后联系又很紧密,部分学生学习时可能会有一定的困难。教材明确规定在研究因数与倍数时,限制在不包括0的自然数范围内研究,避免由此带来一些小学生尚不必研究的问题。教学时要注意以下两点:
学情分析
1.利用乘法引导学生认识因数和倍数。教材在揭示倍数和因数的概念时,没有像原来的教材那样,先揭示整除的概念,再利用整除认识倍数和因数,而是让学生通过分类,用除法算式认识倍数和因数。在找一个数的倍数时,也是让学
教学理念:
数学来源于生活,又回归于生活 。课堂创设动手活动,积累学生的感性认知 。
教学目标:
1、使学生理解容积意义,掌握常用的容积单位以及它们之间的进率。
2、掌握容积和体积的联系与区别,知道容积单位和体积单位之间的关系。
3、感受升和毫升的实际意义,能应用所学知识解决生活中的简单问题。
教学重点:
理解容积意义;掌握容积和体积的联系与区别。
教学难点:
理解容积意义;感受升和毫升的实际意义
教学准备:
教师:1L量杯,一次性纸杯24个(每组3个),1cm3的自制的小正方体容器,8个1升量杯, 10ml钙铁锌口服液,5ml注射器8支
学生:2瓶自己带瓶装水,贴有商标的各种饮料瓶,药水瓶,家用油壶,牛奶袋,果汁盒等。
教学过程:
一、导课
师:老师想送朋友一个生日礼物?(出示长方体礼盒)大家想知道是什么礼物吗?
生:想
师:是一个生日蛋糕
师:如果老师告诉你这个礼盒长3分米,宽3分米,高1分米,这个礼盒的体积是多少?
生:9立方米
师:猜猜,这个长方体礼盒所容纳蛋糕的体积是多少?
生:9立方米,8立方米,7.5立方米等(学生很快否定9立方米)
师:(打开纸盒,露出蛋糕)是你所预料到的吗?如果你过生日收到这样的生日礼物会有何感想?
生:(试说)太小了
师:我买了这么大个礼物还小?
学生:盒子里面太小了
师: 盒子里面太小了,说的真到位。盒子里所容纳的蛋糕的体积叫盒子的容积。今天我们来学习容积和容积单位。(板书课题:容积和容积单位)
(设计意图):学生通过求长方体的体积,并估算出长方体里所能容纳面包的体积,当老师打开礼品后,学生会发现与自己所估算的差别太大,突出容积的表象认知)
二、理解容积的意义
1、举例,感知容积意义
出示墨水瓶:指出墨水瓶所能容纳墨水的体积叫做墨水瓶的容积。
出示茶叶筒:茶叶筒所能容纳茶叶的体积叫做茶叶筒的容积
2、理解容积的意义
利用你准备的学具来说说,什么是它们的容积
【出示课件(第2张幻灯片)】:集装箱、油漆桶(指名说出他们的容积)
3、归纳概括容积意义
像粉笔盒、墨水瓶所能容纳物体的体积叫做它们的容积。(学生齐读,老师板书)
(设计意图:学生在充分的感性实例中积累容积的本质内涵,丰富的积累为学生归纳总结容积意义打下扎实基础)
4、容积和体积的区别与联系。
①区别两者数据给出的不同
师:同学们,我们继续来看这个长方体礼盒。礼盒放在空间,自身有什么?
生:体积
师:打开礼盒,礼盒里面又有什么?
生:容积
师:已知礼盒的长、宽、高,能求出礼盒的容积吗?
生:不能
师:想求出礼盒的容积,必须要知道(老师边比划边问学生)什么?
生:礼盒里面空间的长、宽、高
师:如果老师告诉你礼盒里面的空间是一个棱长为1分米的正方体,你能求出蛋糕的体积吗?
生:能,1立方分米
师:蛋糕的体积就是礼盒的容积
(设计意图:通过学生对直观长方体礼盒的→←体积与容积的计算,突破求容积需要已知容器里面的数据这一难点)
②区别两者本质的不同
师:【出示课件(第3张幻灯片)】:一个较小的实心长方体;一个较大的空心长方体)问题:谁的体积大;谁有容积?
学生:指名回答
③小组讨论,交流汇报两者异同点(课件出示第4、5张幻灯片)
师:同学们,体积与容积一字之差,他们有什么区别与联系呢?(小组讨论,交流汇报)
联系:求的都是物体的体积。
区别:体积求的是物体占空间的大小。(外部)
容积求的`是物体所能容纳空间的大小。(内部)
(设计意图:多角度的区分容积与体积的不同,从而使学生较为全面的理解容积的意义,突破容积意义这一教学难点)
三、教学容积单位
1、计量容积一般用体积单位。
常用的体积单位有:立方厘米、立方分米、立方米(学生边说,老师边板书)
2、认识升和毫升。
①观察学具,看看你所带的饮料瓶上所标示的净含量,你发现了什么?(小组交流汇报:发现它们的单位都是L 、 ml而且这些饮料瓶里装的是液体。)
②在计量液体的体积时,常用容积单位升(L)和毫升(ml)。当遇到液体体积很大时,例如:计量蓄水池、游泳池里的水的体积,就用立方米。(板书)
3、感知1L
①介绍量杯,观察1L的刻度线,
②组长负责,将桌面上的瓶装水倒入1L的量杯中水,其他人仔细观察
③生活中,我们常用杯子喝水,组长负责将1L倒入纸杯大小,观察1升水大约几纸杯
④ 谈谈,对1L水你有什么感受?
⑤生活中那些物品用升做容积单位?(生:油桶、水桶、大瓶饮料瓶的容积)
4、感知1ml
(整队纪律,老师将在每组中找一名最快坐好的同学,负责下一个活动。给每组发一个5ml注射器)
① 桌面上有一杯有颜色的水,组长负责,用针管吸入1ml水,让大家看看
② 再将这1ml水注入一个空纸杯,再让大家看看
③ 谈谈,你对1ml水有什么感受?
④ 你准备的学具中那些标有毫升,是多少毫升?(举例:眼药水5ml、钙口服液10ml等)
(设计意图:学生通过吸入1ml带蓝色的水,在注入纸杯的过程中感受1ml的多少,突破学生对1ml由感性认知到理性认知的突破)
5、1L与1ml的关系
师:通过前面几个活动,大家了解了1L 、1ml。那么1L 与1ml有怎样的关系呢?仔细观察桌面上的量杯,你就能找到答案
生:齐答1L =1000ml(板书)
6、升与立方分米、毫升与立方厘米的关系
师:计量容积,一般用体积单位,但计量液体的体积时,常用的体积单位是升与毫升。这两者之间有没有关系呢?老师想请一位同学和老师一起做个实验。
(拿出准备1立方分米的透明正方体,1升有颜色水)
师:老师会做好你的助手,拿稳盒子,你放心大胆的到,开始!(此个环节老师要装作很神秘,学生在整个过程中很兴奋)
生:(全场一片惊讶)得出:1升=1立方分米
师:看来他们之间真有联系,谁能用黑板上的关系推算出1毫升等于多少?
生:观察得出: 1毫升=1立方厘米
(设计意图:学生通过这个活动,突破1升=1立方分米的教学难点)
四、小结
通过前面有趣的动手操作,闭上眼睛体会:升一般用于计量油桶、水桶、大瓶饮料瓶等的容积;毫升一般用于计量眼药水、药水、小瓶饮料瓶等的容积;而计量、集装箱容积;蓄水池、游泳池里的水的体积,就用立方米。
五、练习巩固【课件出示(第6、7、8张幻灯片)练习题】
1、填一填
一瓶钢笔水的容积是60( ) 摩托车油箱的容积是8( )一瓶矿泉水的容积是600( )
运货集装箱的容积约是40( )微波炉的容积是45( )
(集体订正、纠错。)
2、填出合适的数
4L =( )ml4800 ml =( )L2.4 L =( )ml785 ml=( )L752cm3=( )dm37.5 L=( )ml36 dm3=( )cm38.04 dm3=( )cm32750ml =( )L
(引导学生说出每道题是怎么换算的思路)
3、联系实际【课件出示(第6、7、8张幻灯片)】
出示生活中用到本节知识的图片(喝水、潜水艇、献血等图片)
(设计意图:练习有层次,有代表性。由知识题型过度到生活实际,使学生理解数学来源于生活又应用于生活)
六、结课
今天我们所学的知识与生活联系非常紧密,大家下去后在生活中找找与我们这节课有关的内容,下节课我们将进一步学习容积的知识。
板书设计:
容 积 和 容 积 单 位
像墨水瓶、粉笔盒、教室等所能容纳物体的体积,叫做它们的容积。
一般用体积单位:立方厘米(cm3)、立方分米(dm3)、立方米(m3)
计量液体:升(L)、毫升(ml)、立方米(m3)
它们间的关系:1L= 1dm3
1 ml=1 cm3
1L=1000 ml
教学目标:
1,使学生感受数学与现实生活的密切联系,初步学会列方程解决一些稍复杂的生活问题。
2,学会找出生活问题中相等的数量关系,正确列出方程。
3,培养学生根据具体情况,灵活选择算法的意识与能力。
4,培养学生的合作交流意识,让学生在学习过程中获得成功体验,培养学生积极的数学情感。
教学重点:用方程解"已知比一个数的几倍多(少)几是多少,求这个数"的问题。
教学难点:分析问题中的等量关系,并会列出方程解答。
教学准备:多媒体课件。
教学过程:
一,知识回顾:
1,解下列方程。
X+2x=147 y-34=71
2,根据下面叙述说说相等关系,并写出方程。
①公鸡x只,母鸡30只,是公鸡只数的2倍。
②公鸡有x只,母鸡有30只,比公鸡只数的2倍少6只。
3,(媒体出示教材情景图)讲述:一天,学校的足球场上,善于观察的小军,勤于研究的小华和爱提问题的小刚三人休息时,突然发现足球的秘密。小军发现……小华发现……小刚提出……
(足球上黑色的皮都是五边形,白色的皮都是六边形的。黑色皮共有12块,白色皮比黑色皮的2倍少4块,共有多少块白色皮 )
让学生独立做,集体订正时,(板书线段图)。
二,合作探究:
1,教学例1(媒体出示教材情景图)。
"足球上黑色的皮都是五边形,白色的皮都是六边形的。白色皮共有20块,白色皮比黑色皮的2倍少4块,共有多少块黑色皮 "
(1)审题,寻找解决问题的有用信息。
提问:"例题与复习题有什么相同的地方 " "有什么不同的地方 "
教师说明:例1就是我们以前见过的"已知比一个数的几倍少几是多少,求这个数"的问题。今天我们学习用方程解答这类问题。
教师板书:稍复杂的方程
(2)分析,找出数量之间的相等关系(教师板书线段图讲解)
看图思考:白色皮和黑色皮有什么关系
学生小组讨论,汇报结果。
可能出现的等量关系是:黑色皮的块数×2-4=白色皮的块数
黑色皮的块数×2-白色皮的块数=4
黑色皮的块数×2=白色皮的块数+4
(3)同桌讨论怎样列出方程。
(4)交流汇报并让学生根据题意说出所列方程所表示的等量关系。允许学生列出不同的方程。
板书学生的方程并选择2x-4=20讨论它的解法。
学生小组讨论解法。
汇报交流板书:
解:设共有x块黑色皮。
2x-4=20
2x-4+4=20+4
2x=24
2x÷2=24÷2
x=12
检验:(引导先生口头检验)
答:共有12块黑色皮
(5)学生选择其余的方程解答。
2,变式练习。
(1)教师:如果把例1中的第二个条件改成"白色皮比黑色皮的2倍多4块"该怎样列方程 (课件演示把白色皮比黑色皮的2倍少4块中的"少"换成"多")让学生列出方程解答。
(2)把它和例1加以比较,使学生清楚地看到,这种用算术方法解需要"逆思考"的应用题,不论是"几倍多几"还是"几倍少几"列方程都比较容易。
3,引导学生总结列方程解决问题的步骤:
①弄清题意,找出未知数,用x表示。
②分析,找出数量之间的相等关系,列方程。
③解方程。
④检验,写出答案。
三,巩固应用
1,只列式不计算。(课件出示)
①图书室有文艺书180本,比科技书的2倍多20本,科技书x本。
②养鸡厂养母鸡400只,比公鸡的2倍少40只,公鸡x只。
③学校饲养小组今年养兔25只,比去年养的只数的3倍少8只,去年养兔x只。
④一个等腰三角形的周长是86厘米,底是38厘米。它的腰是x厘米。
2,学生独立完成,集体汇报交流
①北京故宫的面积是72万平方米,比广场面积的2倍少16万平方米。广场的面积是多少万平方米
②世界上的洲是亚洲,最小的洲是大洋州,亚洲的面积比大洋州面积的4倍还多812万平方千米。大洋州的面积是多少万平方千米
③猎豹是世界上跑得最快的动物,能达到每小时110km,比大象的2倍还多30km.大象最快能达到每小时多少km
④共有1428个网球,每5个装一筒,装完后还剩3个。一共装了多少筒
3,拓展提高。
①甲乙两数的和是90,甲数是乙数的2倍。甲乙两数各是多少
②甲乙两数的和是183,甲数比乙数的2倍还多3.甲乙两数各是多少
四,全课总结
今天这节课你学到了什么知识
板书设计:
先把2x看作一个整体
教学内容:
长方体、正方体的体积计算
教学目标:
1.通过讲授,引导学生找出规律,总结出体积的公式。
2.指导学生运用公式正确计算长方体、正方体的体积。
3.培养学生积极思考、探索新知的思维品质。
教学重点:
长方体、正方体体积计算。
教学难点:
长方体、正方体体积计算
教具运用:
正方体木块若干。
教学过程:
一、复习导入
1.什么叫体积?计量物体的体积常用的单位有哪些?
2.怎样计算一个物体的体积呢?
二、新课讲授
1.长方体体积的计算。
教师课件出示一块长方体积木,一块盖房用的大型砖板。
(1)提问:它们的体积是多少?你是怎样想的?
引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。
教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。
(2)观察操作,探究长方体的体积公式。
小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。
学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。
说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?
学生独立思考,然后小组内讨论交流,得出结论。
小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的`数量正好等于长方体长、宽、高的乘积。
板书:长方体的体积=长宽高
讲述:如果用字母V表示长方体的体积公式可以写成:V=abh
(3)质疑:求长方体的体积公式需要知道什么条件?
2.探究正方体的体积公式。
(1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。
(2)引导学生明确。正方体的体积=棱长棱长棱长(板书)用字母表示:V=aaa=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)
3.运用长方体的体积公式解决问题。
(1)出示教材第30页的例1。
(2)学生看图,理解题意。
(3)说出题中所给信息,和所求问题。
(4)指名说出长方体的体积公式。
(5)指名学生上台板演过程,其他同学判断。
(6)老师订正书写。V=abh=743=84(cm3)
(7)看图,学生独立在练习本上完成。
(8)指名板演,集体订正。
三、课堂作业
完成课本第31页做一做第1、2题。
四、课堂小结
1.这节课,你有什么收获?
2.在计算长方体和正方体的体积时,要注意哪些问题?
五、课后作业
完成练习册中本课时练习。
板书设计 :
长方体和正方体的体积
长方体的体积=长宽高
V=abh
正方体体积=棱长棱长棱长
V=aaa=a3
教学目标:
1.知识技能:经历探索分数基本性质的过程,理解分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。
2.思考与问题解决:经历观察讨论,操作等学习活动,能对分数的基本性质作出简要的,合理的说明,培养学生的观察,比较,归纳,总结概括的能力。
3.情感态度:经历观察,操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣,鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。
教学重点:
探索,发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。
教学难点:
自主探索,归纳概括分数的基本性质。
教具学具准备:
多媒体课件,正方形纸,彩笔。
教学设计:
一、创设情境,导入新课:
1.课件分别出示两张不同的孙悟空的照片。师:学们仔细看看这两张照片,你有什么发现?(指名回答)。
2.教师引导交流:孙悟空本人没有改变,只不过是外表的打扮装饰发生了改变。
3.学生初步感知了什么变了而什么却没有变的概念。
4.教师导入新课:今天我们就来探讨什么变了而什么没有变的有关内容。教师板书课题:分数的基本性质设计意图:利用学生感兴趣的图片来吸引学生的注意力和观察能力,为下一步学习营造一个轻松活跃的氛围。
二、探究新知。
(一):1.师:在我们在学习这个新的内容之前,我们首先来复习一下除法与分数的关系。学生回答教师板书:
被除数=课件出示:120÷30=(120×2)÷(30×2)=(120÷10)÷(30÷10)= 2.同学们说说这几道相等吗?(指名回答)。
3.教师引导说出商不变的性质,课件出示商不变的性质的定义。
设计意图:通过复习商不变的性质,为下一步更容易的学习分数的基本性质打下基础。
(二)、教学新知。
1.师:请同学们拿出课前准备好的正方形纸,把手中的纸平均折成4份,其中把3份图上你喜欢的颜色。
2.学生操作,教师巡视并特别提醒学生注意“平均分”。
3.展示学生的作业。
4.师:现在请同学们把正方形纸平均分成8份,16份,分好之后你有什么发现?(指名回答)。
5.教师归纳总结,并课件出示:设计意图:同一张纸能平均分成不同的份数,拓展学生的思维能力。
6.引导学生观察:
观察它们的分子和分母是怎样变,学生观察,思考,交流后,教师集体指导观察,并板书:
教师归纳总结后,学生完成课本66页的填空题,完成后集体回答。
设计意图:学生通过动手操作发现一些表象,但这些表象还须上升为科学理论,这就需要学生能透过表象识别表现后蕴藏的规律,这才能知其然且知其所以然,便于以后举一反三,解决同类相关问题。
7.课件出示:(通知互相讨论)
(1)相比较,看看分子分母有什么变化?(2)在这个变化中,你们发现了什么规律。
8.教师引导学生说出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。(教师特别强调“同时”“同一个数”)。
9.教师提出疑问:为什么要0除外呢?学生回答,教师归纳:因为0和任何数相乘都得0,而分数的分母是不能为0的。
10.同学们,现在你们来看看分数的基本性质和你们以前学习过得商不变性质有什么不同呢?(课件出示两性质作对比)
师:分数的基本性质和商不变性质的规律是一致的。
三、巩固强化,拓展应用。
(1)课件出示:(集体回答)。
(2)指出下列分数是否相等。(指名回答)。
(3)把和化成分母是10而分数大小不变的分数。(指名到台上板演)。
(4)课件出示小故事。
有位老爷爷把一块地分给三个儿子。老大分到了这块地的,老二分到了这块地的。老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。
你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?(让学生课后去思考)
设计意图:多样的练习可以让学生及时巩固所学知识,有调动了学习的积极性。
四、回顾总结,梳理新知。
同学们,你们对分数又有了哪些新的了解呢?板书设计:分数的基本性质数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。
教学反思:
1.创设情境,激发学生兴趣。出示孙悟空的照片激发学生的兴趣,吸引学生的注意力。
2.手脑并用,在操作中深入感知分数。请同学们用一张正方形纸片,动手折一折,通过三次的对折,每次找出一个和相等的分数,比较涂色部分大小有没有变化?(没有)。那么得到了什么结论?教师引导学生观察分子,分母的变化,经历总结得出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。学生对此进行巩固后,再引导学生说出:0除外。学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。
3.巩固练习,围绕中心。在设计练习的过程中,采取多种形式呈现,使学生加深对分数基本性质的理解,激发了学生学习的兴趣,使每个学生都能理解所学知识,学有所获,并进一步学习约分和通分打下了良好的基础。
教学内容:
义务教育课程标准实验教科书青岛版小学数学五年制五年级下册108-109页。
教学目标:
1.利用已有经验认识和了解简单的"排列",掌握解决问题的策略和方法。体会解决问题策略的多样性。
2.培养初步的观察、分析及推理能力,能有序地、全面地思考问题。
3.尝试用数学的方法来解决生活中的实际问题,感受数学在现实生活中的广泛应用。
4.在数学活动中养成与人合作的良好习惯,并初步学会表达解决问题的大致过程和结果。
教学重点:
培养学生思维的有序性。
教学难点:
抽象概括计算规律。
教学准备:
计数器,答题纸。
教学过程:
一、提出问题:
师:同学们,数学王国里有十个数字,它们是……
生:0、1、2、3、4、5、6、7、8、9。
师:就是0-9,用这简单的十个数字可以提出很多的数学问题。请看大屏幕。
出示课件:例:用1、2、3三个数字可以组成多少个没有重复数字的三位数呢?
师:问题提出来了,敢不敢迎接挑战?
生:敢!
师:谁来说说,你是怎么理解“没有重复数字的三位数”的?
生:举个例子吧,221不行,因为十位上的2和百位上的2重复了。
师:看来“没有重复数字的三位数”就是指百位、十位、个位三个数位上的数字不能相同。下面请同学们开动脑筋,把你的答案写在练习本上,咱比一比,谁写的又准确,速度又快。
二、研究问题:
1、解决问题:
(学生尝试解决问题)
师:同学们写完了,哪位同学愿意展示一下你的答案?
生:(投影仪展示)123,321,213,132,321。
师:还有其他的写法吗?
生:(投影仪展示)123,132,213,231,312,321。
师:两种写法,你认为哪一种更好?
生:第二种更好。
师:为什么?(学生茫然)同桌讨论一下。
生:第二种更好,因为第一种有遗漏,少了231,而第二名同学是有规律地写的,不会重复也不会遗漏。
师:观察第二种写法有重复或遗漏吗?
生:没有!
师:看来按规律写是不会重复也不会遗漏。老师把这种写法记录下来。
教学内容:
人教版五年级下册第132-133页“打电话”
教学目标
利用学生熟悉的生活情境,通过画图的方式,使学生找到打电话的最优方法;进一步体会数学与生活的密切联系以及优化思想在生活中的应用。
教学准备
多媒体、卡片、主题图
教学流程:
一、提出问题
(板书课题)(谈话引入)今天,我们学习打电话,你会打电话吗?那我看看你们到底会不会?李老师刚接到学校紧急通知,要合唱队的15人去参加演出,怎么可以尽快地通知到这15个队员呢?”同学们帮忙想想办法吧!
(教学预设:这时学生可能出现以下两种情况:
1、逐个通知;
2、帮忙转告)这个帮忙转告,怎么个转告法?你想让几个人去转告?没有别的方法了吗?(设计意图:先让学生想想都有哪些通知的方法。这里有必要引导学生说出两大种方法:平均分组和不平均分组。从平均分组到不平均分组有一个思维跨度,有时学生是不敢想或不会去想。在教学中很有必要锻炼学生的这种发散思维,这也是为等一下的优化方案做铺垫。所以要让学生知道,在想办法时,要大胆地从不同的角度去思考解决问题的方法,这样,我们才能从众多的方法中选出最好的方法。)
猜一猜:哪种方法快?比如平均分成3组和平均分成5组比,哪种快。是不是分的组数越多就越快?我们怎样才能比较出哪种方法最快?
为了更好地研究今天的这个问题,我们假设每一次通话要一分钟,每个学生都在家。那么你估计一下你最少要几分钟?(学生可自由猜测)(设计意图:猜想一是为了增加趣味性,让学生心中有个疑团,提高探索的欲望。二是要让学生体会验证的必要性。)
二、探索比较
1、每个同学独立思考,把你所知道的方法都列出来,并比较一下,哪种方法最好,想一想,从刚才的比较中,你领悟到什么了没有?
2、教师巡视,参与讨论,了解情况。
3、反馈。学生分别说出自己找到的最好的方法。教师根据学生所说的摆出磁铁。并追问,你刚才比较了几种方法?(设计意图:让学生把各种方法都列出来,再作比较,经历优化的过程)
方案1要15分钟。这样肯定太慢了。那么用分组的方法怎么样呢?请用分组的同学说说你们的方案。
方案2(1):5组,每组3人(要7分钟)
方案2(2):3组,每组5人(要7分钟)
这两种方案与之前你猜想的结果怎么样?是不是组分得越多就越快?有什么想说的吗?所以在猜想上,我们要大胆,要想出你尽可能的答案,然后再验证。如果每组分的`人数不同呢,结果会怎样?
方案2(3):4组(4、4、4、3)(要6分钟)
方案2(4):3组(6、5、4)(要6分钟)
这两种方法与前两种方法有什么不同?为什么时间会缩短?(每个组长都不会闲了)
方案2(5):5组(5、4、3、2、1)(要5分钟)
老师、组长和组员都不闲着,应该怎样设计方案呢?小组讨论,汇报结果。
每分钟通知的人数用不同颜色的笔表示。并让学生讲解。
(设计意图:第二种方案的帮忙转告。汇报时,让学生说说自己都列举并比较了哪几种方案,认为哪种方案最好。只有让学生亲自去比较才能体会到优化的过程,切身体验到优化是怎么一回事。让学生去比较了各种方案,学生也更容易得出各种方案优化的原因,从组长不空闲到老师、组长不空闲,再到老师、组长和组员都不空闲。)
三、探究规律
这的确是个好办法,这个方案,你们发现有什么规律吗?
太棒了!这个同学的发现很了不起。我们不妨用列表的方法,可以看得更清楚一些。
(先出示空表,边问边填完整。)
第几分钟:1、2、3、4 …
接到通知人数:1、2、4、8 …
你发现了什么规律?(预设:第几分钟通知的人数,是前一分钟通知人数的2倍。)
按照这个规律,第5分钟可以通知多少人?第6分钟可以通知多少人?
2分钟一共通知( 3 )人
3分钟一共通知( 7 )人
4分钟一共通知( 15 )人
你又发现了什么规律?(预设:2分钟通知的人数=2个2相乘-1;3分钟通知的人数=3个2相乘-1;4分钟通知的人数=4个2相乘-1;……)5分钟一共通知多少人?6分钟一共通知多少人?这样通知50人最少需要花多少分钟?
四、优化方案
同学们用自己的聪明才智,列举出了这么多种方法,你喜欢哪一种方法,你觉得哪一种方法最好?(学生说后)怎样才能比较出哪种方法最好?
板书设计:
打电话
方案1:逐个通知
方案2:帮忙转告
(1)平均分成3组(5,5,5)——7分钟
(2)平均分成5组(3,3,3,3,3)——7分钟
(3)分成4组(4,4,4,3)——6分钟
(4)分成3组(6,5,4)——6分钟
(5)分成5组(5,4,3,2,1)——5分钟