作为一名人民教师,就难以避免地要准备教案,教案是备课向课堂教学转化的关节点。快来参考教案是怎么写的吧!
教学内容:
本节内容属北师大版小学数学五年级下册第四单元“长方体(二)”最后一节的内容:有趣的测量(求不规则物体的体积)。
教材分析:
本节课是在学生已经掌握了长方体和正方体的认识,长方体和正方体的表面积、体积的知识,了解了容积的内容的基础上呈现的。要使学生通过观察、比较,掌握不规则物体的体积的求法,拓展了学生的知识面,渗透了转化的思想。
学情分析:
本班级学生,大部分学习认真、踏实、自觉,基础扎实,好学上进,部分男生活泼好动,爱思考。对于探索数学问题有着极其浓厚的兴趣,喜欢自己动手解决问题。在他们身上还明显地存在着儿童的天性,好动、好奇等。对于本单元的知识,大部分学生掌握得比较扎实。
教学目标:
1、经历测量芒果、石头、水瓶的体积的实验过程,探索不规则物体体积的测量方法,渗透转化的思想。
2、掌握不规则物体的测量方法,并能测量不规则物体的体积。
3、在实践与探索过程中,尝试用多种方法解决实际问题,提高灵活解决实际问题的能力。
教学重点:
让学生掌握不规则物体体积的测量方法。
教学难点:
灵活运用“排水法”和“溢出法”解决实际问题。
教具准备:
魔方、芒果、圆柱体量杯、长方体水槽、石块、苹果醋若干瓶
教学过程:
一、 导入
1、同学们,周末老师在整理房间的时候,从柜子里发现了一个魔方,我特别喜欢。
从数学的角度来讲,魔方是一个什么样的物体?(正方体)
怎样求出这个正方体的体积呢?(板书:V正=a)
它的棱长是10cm,体积是多少呢?(1000cm)
2、除了正方体,你还会求哪些立体图形的体积?(板书:V长=abh)
3、像长方体和正方体这样,都能够直接通过公式求出它们的体积,这样的物体,我们把它们叫做“规则物体”。(板书:规则物体)
4、现在请同学们再观察老师手中的魔方,它还是正方体吗?(旋转一下)那它是什么形状的物体呢?
像这样,无法用语言准确地说出具体形状的一类物体,在我们的生活中随处可见,我们称它们为“不规则物体”。(板书:不)
5、现在这个魔方的体积是多少呢?(还是1000cm)你是怎么想的?(板书:转化)
【设计意图:我用正方体魔方引入,把本节课主要用到的数学思想渗透给学生,为后面的实验做铺垫,同时又可以激发学生学习的积极性。】
6、魔方是一个比较特殊的物体。再看,现在老师手中拿的这个芒果也是一个不规则的物体,我们能直接把它转化成规则的物体吗?
那它的体积是多少,又该怎样求呢?
这节课,我们就通过有趣的测量,共同来研究不规则物体的体积。
二、新授
(一)测量芒果的体积
1、你想怎样测这个芒果的体积呢?(学生汇报)
2、桌面上,老师为每个小组准备了两种测量工具:量杯和一个长方体容器。
你认为选择哪一种测量工具,能够很快地求出芒果的体积?为什么?(选择量杯,因为它有刻度)
3、这样做确实能比较快的求出芒果的体积,你来看(ppt演示)
量杯中装有一部分水,正好是300mL,这300mL指的是什么?(水的体积)
仔细观察,将芒果放入水中后,水面发生了怎样的变化?为什么水面会上升呢?那么,现在的400mL指的是什么?(水和芒果的体积)
现在,你知道芒果的体积是多少吗?
100是芒果的体积,它也是什么的体积?(上升的水的体积)
4、在刚才的实验中,我们借助量杯完成了一次转化。是将什么转化成了什么呢?(将芒果的体积转化成了上升的水的体积,也可以说是将不规则的芒果转化成了规则的圆柱体)
5、像刚才这样测量不规则物体体积的方法,我们把它叫做“排水法”。
【设计意图:教师引导学生观察第一个实验:用量杯和水试一试、测一测芒果的体积。学生通过讨论、交流观察等一系列的活动,让学生初步的明白应用转化的思想,可以把不规则物体的体积转化为上升部分的水的体积,也就是测不规则物体体积的基本方法。】
(二)测量石头的体积
1、现在老师也想进行一次测量,我想测的是这块石头的体积。
我应该选择什么工具来测量呢?为什么?(选择长方体容器,因为石头太大了)
2、用这个长方体容器怎样求出这块石头的体积呢?在小组内和你的同伴说一说。(讨论后,学生汇报)
3、在测量的时候应该注意什么?(强调:要从里面测量)
出示数据:长25cm,宽18cm,水面高度8cm。慢慢将石头放入水中,观察水面发生了什么变化?为什么?
这样放行不行(竖着)?为什么?(石头没有完全浸入水中)
石头已经完全浸入水中,此时水面的高度是10cm
4、你能根据屏幕上显示的数据计算出这块石头的体积吗?(学生动笔计算)
5、刚才,在我们的共同努力下,测得了这块石头的体积。
在这次实验中,我们又完成了一次转化,是将什么转化成了什么?(将石头的体积转化成了上升的水的体积,也可以说是将不规则的石头转化成了规则的长方体)
【设计意图:学生有了第一个实验的基础,教师调换实验用品进行第二个实验,把量杯换为长方体容器来进一步探索求不规则物体的体积。学生有了第一个实验的基础,会很容易的探索出把不规则物体的体积转化为可计算的长方体的体积,从而突破本节课的重难点。在这一环节中教师适时强调,测量时要把石头完全浸入水中,才能应用转化的思想求体积。】
6、你还有其他的方法能够测量出这块石头的体积吗?(出示“溢出法”和“排水法”的逆运用)
【设计意图:教师引导学生思考其他测量不规则物体体积的方法,从而让学生明白解决问题的方法的多样性。】
7、其实,早在20xx多年前,大物理学家阿基米德就曾经用过刚才同学们说到的方法帮助国王解决了一个难题,出示“数学万花筒”,学生读。
(三)测量苹果醋瓶的体积
1、现在你们想不想亲自测量一下不规则物体的体积?
机会就在眼前,每个小组的桌面上都有一瓶苹果醋。在大家动手之前,请你先猜猜看“这个瓶子的体积是多少?(净含量:260mL)
2、现在就动手来验证一下吧。将记录填写在实验报告单中。
实验报告单
长方体容器的长
长方体容器的宽
放入前
水面高
放入后
水面高
苹果醋瓶的
体积
25cm
18cm
【设计意图:新数学课程标准中强调,教学中“做”比“知道”更重要。数学活动课要把握好实践活动的时机,凡是能让学生自己设计的,就让学生亲自去发挥;凡是能让学生自己去做的,就让学生亲自去动手。】
3、在刚才的实验中,我们又完成了一次转化,谁能来说一说?
(四)总结
通过这几次的实验,我们发现:不管是“排水法”还是“溢出法”,实际上都是在完成一次转化,是将什么转化成什么呢?(将不规则物体转化成规则物体)
【设计意图:使学生明确“转化”思想的实质。】
三、质疑
看书 页,对于今天我们学习的知识,你还有什么不清楚的地方?
四、课堂练习
(一)填空
1、一个量杯水面刻度200mL,放入一个零件后,量杯水面刻度450mL,这个零件的体积是( )。
2、一个长方体容器装满水,底面长8dm,宽5dm,高3dm,放入一个不规则物体后,溢出30升的水,这个不规则物体的体积是( )。
3、一个长方体容器,从里面量长3分米,宽2分米,高5分米,里面装有水,水深3分米,如果把一块小长方体放入水中,小长方体的长是10厘米,宽8厘米,高5厘米,上升的水的体积是( )。
【练习目的:强化“转化”思想的实质。】
(二)解决问题
第一组
1、一个长方体容器,底面长4dm,宽2dm,放入一个石块后水面上升了0.5dm,这个石块的体积是多少立方分米?
2、一个正方体的容器,棱长20厘米,现装有深度为5厘米的水。在放入一个物体后,水面上升到8厘米,放入物体的体积是多少立方厘米?
【练习目的:通过对比练习,由直观到抽象,激发了学生的学习兴趣,提高了教学效率与效益。】
第二组
1、一个长方体容器,长20厘米,宽15厘米,高10厘米。将一块铁块放入容器中,装满水,再将铁块取出,这时容器中的水面高度是6厘米,这块铁块的体积有多大?
2、一个正方体容器装满水,当放入一个长方体后,容器中溢出了48升水,已知长方体长8分米,宽2分米,求高是多少厘米。
3、一个棱长为15厘米的正方体容器内水深8厘米,浸入一个不规则的钢块后,水面上升到距容器口3厘米处,这个钢块的体积是多少?
【练习目的:由浅入深,层层深入,采用小组合作的形式,让学生参与到教学全过程,增强学生的主人翁意识。】
五、全课小结
1、通过这节课的学习,你有什么收获?(学生汇报)
2、生活中有许多不规则的物体,我们可以把它们转化成规则的物体来计算出体积。在解决数学问题的时候,往往需要我们用一种变通的方法去思考。
3、拓展练习:那么,你能想办法测出一粒黄豆的体积吗?(学生汇报)
一粒黄豆非常小,把它放入水中,我们很难看出水面的升高情况,也就很难算出它的体积。我们可以先测量出一定数量的黄豆的体积,再除以黄豆的数量,就能得出一粒黄豆的体积了。
板书设计:
转化
有趣的测量:不规则物体的体积 规则物体的体积
V正=a 芒果的体积 上升的水的体积
V长=abh 石头 下降
瓶子 溢出
教学目标:
1.知识技能:经历探索分数基本性质的过程,理解分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。
2.思考与问题解决:经历观察讨论,操作等学习活动,能对分数的基本性质作出简要的,合理的说明,培养学生的观察,比较,归纳,总结概括的能力。
3.情感态度:经历观察,操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣,鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。
教学重点:
探索,发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。
教学难点:
自主探索,归纳概括分数的基本性质。
教具学具准备:
多媒体课件,正方形纸,彩笔。
教学设计:
一、创设情境,导入新课:
1.课件分别出示两张不同的孙悟空的照片。师:学们仔细看看这两张照片,你有什么发现?(指名回答)。
2.教师引导交流:孙悟空本人没有改变,只不过是外表的打扮装饰发生了改变。
3.学生初步感知了什么变了而什么却没有变的概念。
4.教师导入新课:今天我们就来探讨什么变了而什么没有变的有关内容。教师板书课题:分数的基本性质设计意图:利用学生感兴趣的图片来吸引学生的注意力和观察能力,为下一步学习营造一个轻松活跃的氛围。
二、探究新知。
(一):1.师:在我们在学习这个新的内容之前,我们首先来复习一下除法与分数的关系。学生回答教师板书:
被除数=课件出示:120÷30=(120×2)÷(30×2)=(120÷10)÷(30÷10)= 2.同学们说说这几道相等吗?(指名回答)。
3.教师引导说出商不变的性质,课件出示商不变的性质的定义。
设计意图:通过复习商不变的性质,为下一步更容易的学习分数的基本性质打下基础。
(二)、教学新知。
1.师:请同学们拿出课前准备好的正方形纸,把手中的纸平均折成4份,其中把3份图上你喜欢的颜色。
2.学生操作,教师巡视并特别提醒学生注意“平均分”。
3.展示学生的作业。
4.师:现在请同学们把正方形纸平均分成8份,16份,分好之后你有什么发现?(指名回答)。
5.教师归纳总结,并课件出示:设计意图:同一张纸能平均分成不同的份数,拓展学生的思维能力。
6.引导学生观察:
观察它们的分子和分母是怎样变,学生观察,思考,交流后,教师集体指导观察,并板书:
教师归纳总结后,学生完成课本66页的填空题,完成后集体回答。
设计意图:学生通过动手操作发现一些表象,但这些表象还须上升为科学理论,这就需要学生能透过表象识别表现后蕴藏的规律,这才能知其然且知其所以然,便于以后举一反三,解决同类相关问题。
7.课件出示:(通知互相讨论)
(1)相比较,看看分子分母有什么变化?(2)在这个变化中,你们发现了什么规律。
8.教师引导学生说出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。(教师特别强调“同时”“同一个数”)。
9.教师提出疑问:为什么要0除外呢?学生回答,教师归纳:因为0和任何数相乘都得0,而分数的分母是不能为0的。
10.同学们,现在你们来看看分数的基本性质和你们以前学习过得商不变性质有什么不同呢?(课件出示两性质作对比)
师:分数的基本性质和商不变性质的规律是一致的。
三、巩固强化,拓展应用。
(1)课件出示:(集体回答)。
(2)指出下列分数是否相等。(指名回答)。
(3)把和化成分母是10而分数大小不变的分数。(指名到台上板演)。
(4)课件出示小故事。
有位老爷爷把一块地分给三个儿子。老大分到了这块地的,老二分到了这块地的。老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。
你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?(让学生课后去思考)
设计意图:多样的练习可以让学生及时巩固所学知识,有调动了学习的积极性。
四、回顾总结,梳理新知。
同学们,你们对分数又有了哪些新的了解呢?板书设计:分数的基本性质数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。
教学反思:
1.创设情境,激发学生兴趣。出示孙悟空的照片激发学生的兴趣,吸引学生的注意力。
2.手脑并用,在操作中深入感知分数。请同学们用一张正方形纸片,动手折一折,通过三次的对折,每次找出一个和相等的分数,比较涂色部分大小有没有变化?(没有)。那么得到了什么结论?教师引导学生观察分子,分母的变化,经历总结得出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。学生对此进行巩固后,再引导学生说出:0除外。学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。
3.巩固练习,围绕中心。在设计练习的过程中,采取多种形式呈现,使学生加深对分数基本性质的理解,激发了学生学习的兴趣,使每个学生都能理解所学知识,学有所获,并进一步学习约分和通分打下了良好的基础。
教学目标:
1、通过生活事例,使学生初步了解图形的平移变换和旋转变换。并能正确判断图形的这两种变换。结合学生的生活实际,初步感知平移和旋转现象 。
2、通过动手操作,使学生会在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
3、初步渗透变换的数学思想方法。
重点难点:
能正确区别平移和旋转的现象,并能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
教学准备:
幻灯片、课件。
教学过程:
一、导入
课件出现游乐场情景:摩天轮、穿梭机、旋转木马;滑滑梯、推车、小火车、速滑。
游乐园里各种游乐项目的运动变化相同吗?
你能根据他们不同的运动变化分分类吗?
在游乐园里,像滑滑梯、小朋友推车、小火车的直行、速滑这些物体都是沿着直线移动这样的现象叫做平移(板书:平移)。
而摩天轮、穿梭机、旋转木马,这些物体都绕着一个点或一个轴移动这样的现象,我们把他叫做旋转(板书:旋转)。
今天我们就一起来学习“旋转”。板书课题。
二、学习新课
1、生活中的平移。
平移和旋转都是物体或图形的位置变化。平移就是物体沿着直线移动。
在生活中你见过哪些平移现象?先说给你同组的小朋友听听!再请学生回答。
说得真棒,瞧,我们见过的电梯,它的上升、下降,都是沿着一条直线移动就是平移。
你们想亲身体验一下平移吗?
全体起立,我们一起来,向左平移2步,向右平移2步。我们生活中的平移现象可多了,能用你桌上的物体做平移运动吗?
2、生活中的旋转:
你们真是聪明的。孩子,不仅认识了平移的现象还学会了平移的方法。刚才我们还见到了另一种现象,是什么呀?(旋转)
旋转就是物体绕着某一个点或轴运动。
“你见过哪些旋转现象?”先说给同桌听听,然后汇报。
像钟面的指针,指南针它们都绕着一个点移动,这些都是旋转现象。
同学们的思维真开阔,下面我们一起来体验一下旋转的现象吧!起立,一起来左转2圈,右转2圈。旋转可真有意思,你能用你周围的物体体验一下旋转吗?现在就让我们一起来轻松轻松,去看看生活中的平移和旋转吧!
3、学习例题3:
(1)与学生共同完成其中的一道题,余下的由学生独立完成。
(2)对于有错误的学生,在全班进行讲评。
4、学习例题4:
(1)引导学生数时要找准物体的一个点,再看这个点通过旋转后到什么位置,再来数一数经过多少格。
(2)先让学生说一说画图的步骤,再来画图。
(3)让学生学会先选择几个点,把位置定下来,再来画图。
(4)课件演示画图过程,并帮助学生订正。
5、课内训练:
1.第6页2题。
2.第9页4题、
课后作业:
板书设计: 旋转
平移和旋转都是物体或图形的位置变化。
平移就是物体沿直线移动。
旋转就是物体绕着某一个点或轴运动
一、知识梳理
1.关于圆,你了解了哪些知识?
(学生同桌互相说说,再指名说说0
2.画一个直径6厘米的圆,并标注圆各部分的名称。
学生独立画圆,教师巡视。
1. 你会求出自己刚才画得那个圆的周长和面积吗?
学生独立练习,2人板演,讲评。
(教师根据学会的回答,整理板书)
二、巩固练习
1.(1)书本117页20题中的1
学生独立画圆,教师巡视检查。
(2)书本117页20题中的2
学生读题理解题意,动手操作,教师巡视。
交流时说说数对是什么意义?
(3)计算圆的周长和面积。
2.书本117页第21题
(1)学生独立填表,再和同桌说说你是怎么得到的?
(2)全班交流,教师板书公式。
3.书本117页22题
(1)学生读题理解,说说要求钢丝的长,必须先求什么?
(2)学生独立完成。
(3)集体讲评
4.书本117页23 题
(1)学生读题后问:“什么是废料?”
(2)那么要求剩下的'废料该如何计算呢?
(3)交流时明确:用正方形的面积-圆的面积
(4)图2中的圆面积该怎么求?图3呢?
(5)学生独立计算,教师辅导。
(6)集体讲评
引导学生发现:由于正方形中圆的面积和是相等的,所以每张铁皮剩下的废料也是相等的。
思考:你能像这样在正方形中剪下一些同样大小的圆,并能使剩下的面积相同吗?
学生尝试练习。
三、全课总结
四、作业布置
一、知识梳理
1、关于圆,你了解了哪些知识?
(学生同桌互相说说,再指名说说0
2、画一个直径6厘米的圆,并标注圆各部分的名称。
学生独立画圆,教师巡视。
1、 你会求出自己刚才画得那个圆的周长和面积吗?
学生独立练习,2人板演,讲评。
(教师根据学会的回答,整理板书)
二、巩固练习
1、(1)书本117页20题中的1
学生独立画圆,教师巡视检查。
(2)书本117页20题中的2
学生读题理解题意,动手操作,教师巡视。
交流时说说数对是什么意义?
(3)计算圆的周长和面积。
2、书本117页第21题
(1)学生独立填表,再和同桌说说你是怎么得到的?
(2)全班交流,教师板书公式。
3、书本117页22题
(1)学生读题理解,说说要求钢丝的长,必须先求什么?
(2)学生独立完成。
(3)集体讲评
4、书本117页23 题
(1)学生读题后问:“什么是废料?”
(2)那么要求剩下的废料该如何计算呢?
(3)交流时明确:用正方形的面积-圆的面积
(4)图2中的圆面积该怎么求?图3呢?
(5)学生独立计算,教师辅导。
(6)集体讲评
引导学生发现:由于正方形中圆的面积和是相等的,所以每张铁皮剩下的废料也是相等的。
思考:你能像这样在正方形中剪下一些同样大小的圆,并能使剩下的面积相同吗?
学生尝试练习。
三、全课总结
四、作业布置
教学内容:
教材第76~77页的练习与应用第8—13题。“探索与实践”第14—16题,“评价与反思”。
教学目标:
1、使学生进一步理解分数的基本性质,掌握约分、通分、比较分数大小的方法,建立合理的认知结构。
2、使学生通过探索与实践,发展数学思考与实践能力,感受数学活动的魅力。
教学重点:
进一步理解分数的基本性质,掌握约分、通分、比较分数大小的方法
教学难点:
运用所学的知识解决简单的实际问题。
教学方法:
讲练结合法
教学过程:
一、回顾与整理
这一单元,我们学习了分数的意义和性质,通过这个单元的学习,你学会了什么?
组织学生进行小组讨论:出示讨论题:
1、什么是分数的基本性质?它与整数除法中商不变的规律有什么联系?你能举例说明吗?2、约分、通分有什么区别?约分、通分的一般方法各是什么?3、你会怎样比较两个分数的大小?学生进行讨论后,进行交流。
二、练习与应用
1、教学第8题
2、教学第9题:
先圈出最简分数,再把其余的分数约分。学生先独立完成,再指名汇报。
3、第10题
引导:前3题可直接根据小数意义,改写成小数,最后1题要根据分数与除法的关系,通过计算改写成小数。
4、第11题比较较分数的大小。
讨论:我们学习了多种分数的大小比较的方法。大家讨论交流后,教师再进行归类。
5、指导第13题
先让学生做,再让学生说出理由。
三、探索与实践
第14题各自记录后计算交流。
第15题要鼓励学生根据要求自主设计图案,再用分数和知识进行描述交流。
要通过展示学生设计的图案,让学生体验成功的乐趣,感受创造之美。
第16题游戏之前要让学生照书上的样子分别做一个转盘,游戏时要帮助理解活动的方法和规则。
要引导学生在游戏中积累比较分数大小的经验,反思比较分数大小的策略。
四、评价与反思
组织学生进行评价与反思时,可以先让学生阅读表中的评价项目,然后回忆学习每部分内容时的表现,再慎重地给五角星涂色,对自己作出公正、合理的评价。
五、作业
第12、13题
第1课时
教学课题:可能性
教学内容:教科书第133-134页内容。
教学目标:
1、结合现实事例,初步学会求简单事件发生的可能性的大小。
2、在游戏中,体验事件发生的等可能性以及游戏规则的公平性。
3、通过解决简单实际问题,体会数学与生活的密切联系,感受学习数学的乐趣。
教学重点:
1、求一些简单事件发生的可能性的大小
2、体会游戏规则公平性。
教学难点:
1、求一些简单事件发生的可能性的大小
2、体会游戏规则公平性。
教学具准备:课前预习、各种颜色的球数个。
教学过程:
一、创设情境、谈话导入
你们喜欢下跳棋吗?下跳棋时你们用什么方法决定谁先走子?
由学生口答
同学们有这么多的办法,我们学校举行了一场跳棋比赛,李力和方明是四年级的种子选手,他们怎样决定谁先走子的?
出示情景图:摸棋子决定吧,摸到红子你先走,摸到蓝子我先走。
出示两袋棋子。
这里有两袋棋子,应该摸哪袋呢?为什么?
学生回答
看来,同学们一致认为摸甲袋棋子公平,(板书:公平)摸甲袋棋子为什么公平呢?
甲袋中红子和蓝子的个数同样多,摸到红子和蓝子的可能性相同吗? (甲袋中摸到红子和蓝子的可能性都是一半)
学生说完后老师小结:红子和蓝子的个数同样多,都占总数的二分之一,也就是摸到红子和蓝子的可能性相等,你能用一个数表示出摸到红子和蓝子的可能性都是多少吗?
为什么用二分之一表示,你是怎样想的?
重点引导学生说出红子和蓝子的个数都占总数的二分之一,所以摸到红子和蓝子的可能性相等,都是二分之一
板书:可能性相等公平
摸乙袋棋子为什么不公平呢?
学生可能出现的情况:
【乙袋中红旗子有1个,摸到红子的可能性是三分之一,蓝子有2个,摸到蓝子的可能性是三分之二,所以摸乙袋不公平。红子的个数占总数的三分之一,蓝子的个数占总数的三分之二,摸到蓝子的可能性大,所以摸乙袋不公平。】
这节我们就学习可能性的大小。
板书:可能性有大小不公平,老师就说,在甲袋中红子和篮子各一个,都占总数的,我们就说在甲袋中摸到红子和篮子的可能性相等都是,然后问学生:在甲袋中摸到红子很篮子的可能性为什么都是呢?
二、合作交流,探究新知:
1、抛硬币
刚才李力和方明用摸棋子的方法决定谁先走子,用抛硬币的方法可以吗? 请同学们认真的读一读游戏规则。
游戏规则:任意抛出一枚硬币,如果正面朝上李力先走,如果反面朝上,方明先走。
� 其实抛硬币这种方法科学家们经过大量的试验证明是公平的,现在让我们一起了解一下他们的实验数据。
浏览抛硬币的数据:
法国数学家、自然科学家蒲丰的实验数据,他做了4040次实验,其中有xx次正面朝上,1992次反面朝上。
美国数学家费勒的实验数据,他做了10000次实验,其中有4979次正面朝上,5021次反面朝上。
英国统计学家皮尔逊的实验数据,他做了24000次实验,其中有1xx次正面朝上,11988次反面朝上。
这些数据说明了什么?找学生回答
通过大量的实验科学家们发现实验的次数越多,正面朝上和反面朝上的可能性就越接近二分之一,所以抛硬币的游戏规则是公平的。
2、转盘摸奖游戏
刚才同学们通过研究摸棋子和抛硬币的游戏规则,知道了可能性有大有小,当可能性相等时游戏规则就是公平的,现在我们就利用刚才的知识做个幸运转转转的游戏好吗?
教师出示颜色大小不等的转盘。
老师决定指针停在红色区域给第一小组发奖品,指针停在绿色区域给第二小组发奖品,指针停在黄色区域给第三小组发奖品,指针停在蓝色区域给第四小组发奖品,指针停在紫色色区域给第五小组发奖品。这样抽奖公平吗?
怎样才能使转盘公平呢?学生回答
教师拿出五等分的转盘,问:使用这个转盘公平吗?为什么? 引导学生说出指针停在每种颜色区域的可能性都是。
3、装球游戏
刚才我们做了幸运转转转游戏,我们再来做个装球的游戏好吗?。谁愿意给大家读一读装球的要求。
你能按要求装球吗?现在请小组长拿出我们的学具,请同学们按要求装球,装完后把你的装球方法说给小组的同学。
班内汇报交流:你是怎样装的,为什么这样装呢?
(相同的方法只说一次) 备注:如果学生没有说出可能性是
4、砸金蛋
刚才我们在游戏中学习了用分数表示可能性的大小,其实在我们的生活中隐藏着许多可能性大小的问题,现在让我们带着一双数学的眼睛走进非常6加1砸金蛋的现场。
你能解决这里面的可能性的问题吗?
出示:在不知情的情况下,第一次砸到一部手机,第二次再砸,再次砸到手机的可能性是()
5、摸牌游戏
同学们喜欢玩扑克牌吗?在我们经常玩的扑克牌中也有有趣的可能性现象呢。
6、成语中的可能性
看来同学们对可能性的问题掌握的很牢固,解决问题已经是十拿九稳了,“十拿九稳”这个成语中用没有我们今天学习的可能性的大小问题呢?
你还能举出这样的例子吗?
看来语文和数学是相通的,只要我们善于观察就会发现很多有趣的现象。
三、课堂总结:这节课你有什么收获呢?
四、限时作业。
教学目标:
理解分数的加减法混合运算的顺序。
能正确计算分数加减混合运算。
会安排自己星期日的时间。
教学过程:
导入
师:今天想和同学们一起统计一下我们班同学星期日的活动,谁来说说你星期日做什么了
生:我在家里写作业、我去叔叔家玩了、我帮妈妈洗衣服了……
新课
调查统计活动
师:同学们,星期日能做各种各样的活动,我们学会统计,我们来统计一下吧!哪位同学想做一个小统计员。(找几位小统计员)
生:(汇报)留在家里的同学是8人,占全班人数的十一分之四,出去玩的同学有五人,占全班人数的二十二分之三。
师:那还剩下一部分同学,那剩下的这部分同学占全班同学的几分之几呢
生:把这两部分的人加在一起,再用全班人数减去这部分。
师:能用全班人数去减吗
生:不能。
师:那么,用什么减呢
生:可以用“ 1 ”减去。
师:为什么用“ 1 ”呢
生:把全班人数看做单位“ 1 ”。
师:为什么把全班同学看做单位“ 1 ”呢
生:因为我们在全班同学里调查,调查出来的人数是占全班人数的几分之几所以把全班人数看作单位“ 1 ”。
师:那怎么列出算式呢
生讨论列出算式。
师:如何计算呢
生小组合作,找出算法,讨论发现了什么
师:从这两道题里我们可以看出分数加减混合运算是有一定顺序的,谁能说说。
生:按照从前往后的顺序,有括号的先算括号里的。
巩固练习
延伸结束
师:我们在统计同学们星期日的安排时,有的同学星期日的时间安排的非常好,大家应学会安排星期日的时间,请同学们安排下你本周星期日的时间吧!
生:做星期日时间的计划
教学目标:
1.通过欣赏与设计图案,使学生进一步熟悉已学过的对称、平移、旋转等现象。
2.欣赏美丽的对称图形,并能自己设计图案。
3.学生感受图形的美,进而培养学生的空间想象能力和审美意识。
重点难点:
1.能利用对称、平移、旋转等方法绘制精美的图案。
2.感受图形的内在美,培养学生的审美情趣。
教学准备:幻灯片、课件。
教学过程
一、情境导入
利用课件显示课本第7页四幅美丽的图案,配音乐,让学生欣赏。
二、学习新课
(一)图案欣赏:
1、伴着动听的音乐,我们欣赏了这四幅美丽的图案,你有什么感受?
2、让学生尽情发表自己的感受。
(二)说一说:
1、上面每幅图的`图案是由哪个图形平移或旋转得到的?
2.上面哪幅图是对称的?先让学生边观察讨论,再进行交流。
三、巩固训练
(一)反馈训练:
完成第8页3题。
1、这个图案我们应该怎样画?
2、仔细观察这几个图案是由哪个图形经过什么变换得到的?
(二)拓展训练:
1、分别利用对称、平移和旋转创作一个图案。
2、交流并欣赏。说一说好在哪里?
四、全课总结
对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉及到其它领域,希望同学们平时注意观察,都成为杰出的设计师。
五、布置作业:
教材第9页第5题。
板书设计:
欣赏和设计
图案1图案2
图案3图案4
对称、平移和旋转知识有广泛的应用。
1.教材地位及作用
《3的倍数特征》一课主要是让学生理解3的倍数特征,能判断一个数是不是3的倍数。本节课是在学习了倍数与因数及2、5的倍数特征的基础上来进行本节课的教学的。本节课主要让学生在猜想中,通过动手圈画百以内的数表,在观察、分析、比较、验证的过程中发现规律。本节课的教学是以后学习公倍数与公因数、约分、通分、分数四则运算等知识的重要基础,这样有利于学生感受数学知识之间的联系,体会前后知识学习的必要性。同时,也发展了学生的数感。
2.教学目标
[1] 经历探索3的倍数的特征的过程,理解3的倍数的特征,能判断一个数是不是3的倍数。
[2] 让学生猜测、验证3的倍数的特征。并在活动中能够积极思考,发表自己的观点,提出问题,解决问题。
[3] 让学生在活动中感受学习数学的兴趣,发展学生分析、比较、猜测、验证的能力。
3.教学重点、难点
理解3的倍数的特征;发现3的倍数的特征的这一规律。
[学情分析]
学生已经掌握了2、5的倍数特征,他们会利用2、5的倍数特征进行迁移来寻找3的倍数的特征,由此产生认知冲突,激发了学生想要探究的愿望,学生会在观察、比较、分析及教师的指导、验证中得出新的结论,体验成功的喜悦。
[教学策略]
1.以学生原有认知为基础,激发学生的探究欲望。利用学生刚学完“2、5的倍数特征”产生的负迁移,直接抛出问题,激活学生的原有认知,学生自然而然将2、5的倍数特征迁移到3的倍数特征的问题中来,由此产生认知冲突,萌发疑问,激发强烈的探究欲望。学生很快进入了问题情境,猜测、否定、反思、观察、讨论,学生会渐渐进入探究者的角色。
2.以问题为中心组织学生展开探究活动。突出学生的主体地位,依据学生的年龄特点和认知水平设计具有探索性的问题,引导学生紧紧围绕“3的倍数有什么特征”这个问题来开展学习活动,指导学生围绕问题展开探究活动,组织师生之间、生生之间的交流和讨论,逐步发现、归纳规律,得出结论,培养学生的探索意识和分析、概括、验证、判断等能力。
[教学过程]
一、从原有认知出发,激发学生求知欲。
师:同学们,我们已经知道了2、5的倍数的特征,那么3的倍数又会有什么特征呢?谁能来猜测一下?
生1:个位上是3、6、9的数是3的倍数。比如33、66、99。
生2:反对,个位上是3、6、9的数不一定是3的倍数,比如13、16、19就不是3的倍数。
生3:个位上是0、1、2、3、……9 的数有的是3的倍数,有的不是3的倍数。
师:看来只观察个位不能确定是不是3的倍数,那么3的倍数有什么特征呢今天我们就来共同研究。
二、观察比较、得出结论。
(1)师:在百以内的数表中圈出3的倍数。
(2)组织学生观察、交流,并呈现已圈出3的倍数的百以内的数表。
师:请观察这个表格,你发现3的倍数有什么特征?把你的发现与同桌交流一下。学生交流后组织全班交流。
生1:我发现10以内的。数只有3、6、9是3的倍数。
生2:我发现不管横着看还是竖着看,3的倍数都是隔两个数一出现。
生3:我全部看了一下,刚才前面那位同学的猜想是不对的,3的倍数个位上是0-9这10个数字都有可能。
师:个位上的数字没有什么规律,那十位上的数字有什么规律吗?
生:没有什么规律,1至9这些数字都出现了。
师:其他同学还有什么发现吗?
生:我发现3的倍数按一条一条斜线排列,很有规律。
师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?
生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。
师:十位数加1,个位数减1组成的数与原来的数有什么相同的地方?
生:我发现3所在的那条斜线,另外两个数12和21的十位与个位上的数字加起来都等于3。
师:这是一个重大发现,其它斜线呢?
生1:我发现6所在的那条斜线上的数,两个数字加起来的和都等于6。
生2:9所在的那条斜线上的数,两个数字加起来的和等于9。
生3:我发现另外几列,边上的30,60,90两个数字的和是3,6,9,另外的数两个数字的和是12,15,18。
师:现在谁能归纳一下3的倍数有什么特征呢?
生:一个数各个数位上数字之和等于3,6,9,12,15,18等,这个数就一定是3的倍数。
师:实际上3,6,9,12,15,18等数都是3的倍数,所以这句话还可以怎么说?
生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。
(3)师:刚才是从100以内的数中发现了规律,得出了3的倍数的特征。如果是3位数甚至是更大的数,3的倍数的特征是否也相同呢?请大家找几个数来验证一下。
(4)生自己写数并验证,然后交流,得出了同样的结论。
三、巩固应用,深化提高
1.圈出3的倍数
75、43、655、888、7431、5916、4012
2、在□内填上一个数字,使这个数是3的倍数,你有几种方法?
127□ □3□ 11□2
四、小结反思
今天,大家自己探究了3的倍数的特征,请你们回忆一下,我们是用什么方法发现这个规律的?(生回答)
附:[板书设计]
3的倍数的特征
12 1+2=3 15 1+5=6 18 1+8=9
21 2+1=3 24 2+4=6 27 2+7=9
33 3+3=6 36 3+6=9
…… ……
一个数各个数位上数字之和是3的倍数,
这个数就一定是3的倍数。
【教学目标】
1.知识与技能
认识通分的意义;
掌握通分的方法,能运用通分的知识比较异分母分数的大小.
2.过程与方法
在比较大小的同时体会多种方法解决问题,提高观察、分析和逻辑思维能力.
3.情感、态度与价值观
在比较异分母分数大小的过程中,感受通分的必要性,体验数学学习的价值。
【教学重点】
理解通分的意义,
掌握通分的方法.
【教学方法】
(1)运用转化原理,组织好铺垫训练,帮助学生实现有效学习迁移。在新旧知识的衔接处铺路搭桥,激活学生思路,引导学生去获取新知;
(2)充分发挥教师的主导作用,采用多种教学方法和课堂评语,激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。
(3) 练习设计由浅入深,由易到难,注意练习的形式、梯度和侧重点,激活学生的学习兴趣,巩固所学知识。
【教学准备】课件.
【课时安排】一课时
【教学过程】
一、复习导入:
1、导语:我们学习了分数大小的比较有两种情况,还记得吗?谁来说一说是哪两种情况?
有部分同学很快说出:一种是分母相同的分数,分子大的分数较
大;另一种是分子相同的分数,分母小的分数较大
2、请同学们看大屏幕的复习题,看谁回答得又快又对:
在圆圈里填上﹤ ﹥或﹦
23441124○ ○ ○ ○ 55789736
二 、探究新知
教师导入新课:如果分子、分母都不相同的分数怎样比较大小呢?
1、教师谈话引入:我知道同学们都很喜欢读书,老师给大家推荐一本好书《人民的好警察任长霞》,这本书介绍了河南省登封市公安局长任长霞的先进事迹,我们书中的同伴红红和亮亮正在读这本书。
2、出示图片,交流方法。
教学预设
(1)求谁看的页数多实际就是求什么?
(就是比较二分之一和三分之二的大小)
(2)今天我们就学习异分母分数大小的比较,
(板书异分母分数大小的比较)
3、合作探究,分组讨论。
(1)提出问题,引发思考
请同学们想一想怎样比较二分之一和三分之二的`大小?
(2)交流比较分数大小的方法
教学预设:
●用画图的方法比较.
展示:画图表示
教师引导:如果分母或者分子数太大,这种办法就不好用了,同学们能不能借助已经学过的知识,设法把这些分数转化同分母的分数,再比较出它们的大小呢?
学生自己探究(此时要给学生留些探究的时间),教师参与学生的学习.交流学法.
●我是这样想的,把他们转化成分母相同的两个分数,就便于比较它
12们的大小了,再根据分数的基本性质,把 和 都转化成不改变原23
34分数的大小,但分母都是6的分数和 .同分母分数相比较,分子66
3412大的分数比较大,因为 <,所以 <6623
(教师板书计算过程).
12●想一想,在把 和这两个分数转化成同分母分数的过程中,都23
借助了哪些旧知识?
学生在回忆的基础上得出:借助分数的基本性质
(3)认识通分
12把 和 这两个异分母分数化成和原来分数相等的同分母分数
教学目标:
1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
3、xx引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:引导学生总结分数乘整数的计算法则
教具准备:多媒体课件、
教学过程:
一、复习引入
1.课件出示复习题。
(1)列式并说出算式中的被乘数、乘数各表示什么?
5个12是多少?xx9个11是多少?xx8个6是多少?
(2)计算:
+xx+xx=xx xx+xx+xx=
2.引出课题。
+xx+xx这题我们还可以怎么计算?今天我们就来学习分数乘法。
二:新知探究
1.出示课题明确学习目标。
2.课件出示自学题纲,让学生自学课本。
(1)分数乘以整数的意义是什么?与整数乘法的意义相同吗?
(2)分数乘以整数的计算方法是怎样的?它是怎样推导出来的?
(3)分数乘以整数的意义。
3、xx课件出示例1
教师引导学生画出线段图。
学生根据线段图列出不同的算式,并解答。
(1)xx引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的
”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。
(2)xx引导学生根据线段图理解,人跑一步是袋鼠跳一下的xx,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个xx是多少?
2/11xx+xx2/11xx+xx2/11xx=
2/11xx×xx3xx=
(3).分数乘以整数的法则。
A.导出计算方法。
你会计算吗?看哪些同学不用老师讲解就能依据转化思想把分数乘以整数这个新知识转为已经学过的`旧知识来进行计算。(可以互相说互相看。)
B.归纳法则。
通过以上计算,想一想分数乘以整数怎样计算呢?
师:比一比,看哪个组的同学总结的语言准确又简练。
小组讨论,总结出法则:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。(板书)
C.应用法则计算。
讨论,这两种方法哪种简单?为什么?
强调:能约分,要先约分;结果是假分数一定要化成整数或带分数。
4、xx教学例2
(1)出示xx×6,学生独立计算。
(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?
(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。
(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。
三、当堂测评(课件出示)
1.看图写算式
2.先说算式意义,再填空。
3.看算式,约分计算。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)
四、学生课堂自评
1、这节课你有什么收获?
2、每个学生给自己在课堂上的表现进行评价。
板书设计
分数乘以整数
意义:求几个相同加数xx和的简便运算。
法则:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。
2/11xx×3
=xx2×3/11
=xx6/11
教学目标:
1、解决实际问题中的有关和、差、倍的数量关系。
2、初步学会设计一个未知数,列方程解答含有两个未知数的实际问题。
3、培养学生学会比较、分析、并能应用已学知识解决实际问题的能力。
教学过程:
一、复习
1、4x+5=54 3×2.1+2x=13.4 0.3x÷2=9 4(x+8)=20
2、学校科技小组的男生是女生人数的4倍,设女生有x人,男生有( )人,男女生共( )人。
3、学校图书组有女生x人,男生为女生的2.5倍,男生有( )人,男女同学共( )人。
4、果园里有桃树45棵,杏树的棵数是桃树的3倍,两种树一共有多少棵?
二、新授课
教学教科书第70页的例3。
1、 分析题目的已知条件和问题。
2、分析本题的数量关系。
请学生说出数量关系,教师板书。
陆地面积 + 海洋面积 = 地球表面积
教师:这道题目中有两个未知数,而这两个未知数之间存在着倍数关系。我们在解题时,只要设其中的一个未知数为x,而另一个未知数就可以用这个未知数来表示,为了解方程方便,通常情况下,设一倍数为x。
3、列方程解应用题。
解:设陆地面积为x亿平方千米,海洋面积就为2.4x亿平方千米
x + 2.4x = 5.1
(1 + 2.4)x = 5.1
3.4x = 5.1
3.4x÷3.4 = 5.1÷3.4
x=1.5
提问:1.5表示什么?(1.5表示陆地面积是1.5亿平方千米)
那海洋面积该怎样求呢?
一种:5.1-1.5=3.6(亿平方千米)
另一种:2.4 x=2.4×1.5=3.6(亿平方千米)
答:陆地面积是1.5亿平方千米,海洋面积是3.6亿平方千米。
引导学生进行检验。
三、巩固练习
1、甲乙两堆货物共重60吨,乙的重量甲的3倍,甲乙两堆货物各种多少吨?
2、苹果重量是梨子重量的4倍,梨子比苹果少600千克,梨子和苹果各重多少千克?
3、练习13 (4、6、7题 用方程解)学生独立完成,教师评讲
小结:今天你学了什么?有什么收获?(小组同学相互交流)
四、作业: 练习十三(5 —10题)
教学内容:
义务教育课程标准实验教科书青岛版小学数学五年制五年级下册108-109页。
教学目标:
1、利用已有经验认识和了解简单的"排列",掌握解决问题的策略和方法。体会解决问题策略的多样性。
2、培养初步的观察、分析及推理能力,能有序地、全面地思考问题。
3、尝试用数学的方法来解决生活中的实际问题,感受数学在现实生活中的广泛应用。
4、在数学活动中养成与人合作的良好习惯,并初步学会表达解决问题的大致过程和结果。
教学重点:
培养学生思维的`有序性。
教学难点:
抽象概括计算规律。
教学准备:
计数器,答题纸。
教学过程:
一、提出问题:
师:同学们,数学王国里有十个数字,它们是……
生:0、1、2、3、4、5、6、7、8、9。
师:就是0-9,用这简单的十个数字可以提出很多的数学问题。请看大屏幕。
出示课件:例:用1、2、3三个数字可以组成多少个没有重复数字的三位数呢?
师:问题提出来了,敢不敢迎接挑战?
生:敢!
师:谁来说说,你是怎么理解“没有重复数字的三位数”的?
生:举个例子吧,221不行,因为十位上的2和百位上的2重复了。
师:看来“没有重复数字的三位数”就是指百位、十位、个位三个数位上的数字不能相同。下面请同学们开动脑筋,把你的答案写在练习本上,咱比一比,谁写的又准确,速度又快。
二、研究问题:
1、解决问题:
(学生尝试解决问题)
师:同学们写完了,哪位同学愿意展示一下你的答案?
生:(投影仪展示)123,321,213,132,321。
师:还有其他的写法吗?
生:(投影仪展示)123,132,213,231,312,321。
师:两种写法,�
师:为什么?(学生茫然)同桌讨论一下。
生:第二种更好,因为第一种有遗漏,少了231,而第二名同学是有规律地写的,不会重复也不会遗漏。
师:观察第二种写法有重复或遗漏吗?
生:没有!
师:看来按规律写是不会重复也不会遗漏。老师把这种写法记录下来。
教学内容:
《因数与倍数认识》第5页。
教学过程:
一、创设情境,引入新课
1、互为关系的辨析(以人与人之间的关系,如你和爸爸、妈妈的关系,你和老师之间的关系,存在这些关系的双方互相的关系表示为例,辨析互为关系)
2、小结互为关系,引入课题。(板书课题:因数与倍数)
二、探究新知
(一)认识因数与倍数
1、回顾学过学过的几类数(自然数,小数,分数)
2、揭示因数与倍数的研究范围,(现在我们来研究自然数中数与数之间的关系。)
3、整除算式的辨别(给下面算式分类,并描述算式的特征)(出示课本P5例1)
4、学生自我分类,小组讨论分类结果,完善分类。
5、辨析整除的意义,自学了解因数、倍数的意义,组内交流自学成果,议一议,辨明因数与倍数。
6、全班交流,选择分类后的算式,说说什么是因数和倍数?说说谁是谁的因数,谁是谁的倍数。
7、当堂训练
(1)完成课本P5下面的“做一做”(独立说、组内互相说、全班交流说) (2)判断:课本P7 T5(1)
(二)因数和倍数的求法
1、自学课本P6例2和例3,初步了解因数与倍数的求法。
2、组内讨论因数与倍数的求法,一个数的因数与倍数的个数、一个数的最小的因数和最大的因数、一个数最小的倍数和最大的倍数。 3、全班交流上面组内交流的知识点,适时辅导,各自完善。 4、当堂训练
(1)完成练习二T1(独立练习、组内交流完善、选择性全班交流)
(2)完成练习二T5(独立判断、组内交流完善、全班交流)
三、总结与分享
与老师和同学分享你的收获与感悟。