数学计算公式【优秀14篇】

数学计算公式可以帮助我们解题,那么数学有哪些常用的计算公式呢?

数学计算公式 1

1、正方形(C:周长S:面积a:边长)

周长=边长×4C=4a

面积=边长×边长S=a×a

2、正方体(V:体积a:棱长)

表面积=棱长×棱长×6S表=a×a×6

体积=棱长×棱长×棱长V=a×a×a

3、长方形(C:周长S:面积a:边长)

周长=(长+宽)×2C=2(a+b)

面积=长×宽S=ab

4、长方体(V:体积s:面积a:长b:宽h:高)

(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)

(2)体积=长×宽×高V=abh

5、三角形(s:面积a:底h:高)

面积=底×高÷2s=ah÷2

三角形高=面积×2÷底三角形底=面积×2÷高

6、平行四边形(s:面积a:底h:高)

面积=底×高s=ah

7、梯形(s:面积a:上底b:下底h:高)

面积=(上底+下底)×高÷2s=(a+b)×h÷2

8、圆形(S:面积C:周长лd=直径r=半径)

(1)周长=直径×л=2×л×半径C=лd=2лr

(2)面积=半径×半径×л

9、圆柱体(v:体积h:高s:底面积r:底面半径c:底面周长)

(1)侧面积=底面周长×高=ch(2лr或лd)

(2)表面积=侧面积+底面积×2

(3)体积=底面积×高(4)体积=侧面积÷2×半径

10、圆锥体(v:体积h:高s:底面积r:底面半径)

体积=底面积×高÷3

11、总数÷总份数=平均数

12、和差问题的公式

(和+差)÷2=大数(和-差)÷2=小数

13、和倍问题

和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)

14、差倍问题

差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)

15、相遇问题

相遇路程=速度和×相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间

16、浓度问题

溶质的重量+溶剂的`重量=溶液的重量

溶质的重量÷溶液的重量×100%=浓度

溶液的重量×浓度=溶质的重量

溶质的重量÷浓度=溶液的重量

17、利润与折扣问题

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

涨跌金额=本金×涨跌百分比

利息=本金×利率×时间

税后利息=本金×利率×时间×(1-20%)

数学计算公式 2

长方形的周长=(长+宽)×2 C=(a+b)×2

正方形的周长=边长×4 C=4a

长方形的面积=长×宽 S=ab

正方形的面积=边长×边长 S=a.a= a

三角形的面积=底×高÷2 S=ah÷2

平行四边形的面积=底×高 S=ah

梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2

直径=半径×2 d=2r 半径=直径÷2 r= d÷2

圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr

圆的面积=圆周率×半径×半径

三角形的面积=底×高÷2。 公式 S= a×h÷2

正方形的面积=边长×边长 公式 S= a×a

长方形的面积=长×宽 公式 S= a×b

平行四边形的面积=底×高 公式 S= a×h

梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2

内角和:三角形的内角和=180度。

长方体的体积=长×宽×高 公式:V=abh

长方体(或正方体)的体积=底面积×高 公式:V=abh

正方体的体积=棱长×棱长×棱长 公式:V=aaa

圆的周长=直径×π 公式:L=πd=2πr

圆的面积=半径×半径×π 公式:S=πr2

圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh

圆柱的表面积:圆柱的表面积等于底面的。周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2

圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh

圆锥的体积=1/3底面×积高。公式:V=1/3Sh

分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

分数的乘法则:用分子的积做分子,用分母的积做分母。

分数的除法则:除以一个数等于乘以这个数的倒数。

数学计算公式 3

1、正方形:

C周长 S面积 a边长 周长=边长×4C=4a 面积=边长×边长S=a×a

2、正方体:

V:体积 a:棱长表面积=棱长×棱长×6S表=a×a×6

体积=棱长×棱长×棱长V=a×a×a

3、长方形:

C周长 S面积 a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab

4、长方体:

V:体积 s:面积 a:长 b: 宽 h:高

(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)

(2)体积=长×宽×高V=abh

5、三角形:

s面积 a底 h高面积=底×高÷2s=ah÷2

三角形高=面积 ×2÷底

三角形底=面积 ×2÷高

6、平行四边形:

s面积 a底 h高面积=底×高s=ah

7、梯形:

s面积 a上底 b下底 h高面积=(上底+下底)×高÷2 s=(a+b)×h÷2

8 圆形:

S面C周长∏d=直径r=半径

(1)周长=直径×∏=2×∏×半径C=∏d=2∏r

(2)面积=半径×半径×∏

9、圆柱体

v体积

h:高

s:底面积

r:底面半径

c:底面周长

(1)侧面积=底面周长×高

(2)表面积=侧面积+底面积×2

(3)体积=底面积×高

(4)体积=侧面积÷2×半径

10、圆锥体:

v体积h高s底面积r底面半径体积=底面积×高÷3

平均数

总数÷总份数=平均数

和差问题的公式

(和+差)÷2=大数

(和-差)÷2=小数

和倍问题

和÷(倍数-1)=小数

小数×倍数=大数

(或者 和-小数=大数)

差倍问题

差÷(倍数-1)=小数

小数×倍数=大数

(或 小数+差=大数)

植树问题

1、非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1

全长=株距×(株数-1)

株距=全长÷(株数-1)

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距×(株数+1)

株距=全长÷(株数+1)

2、封闭线路上的植树问题的数量关系如下

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

盈亏问题

(盈+亏)÷两次分配量之差=参加分配的份数

(大盈-小盈)÷两次分配量之差=参加分配的。份数

(大亏-小亏)÷两次分配量之差=参加分配的份数

相遇问题

相遇路程=速度和×相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间

追及问题

追及距离=速度差×追及时间

追及时间=追及距离÷速度差

速度差=追及距离÷追及时间

流水问题

顺流速度=静水速度+水流速度

逆流速度=静水速度-水流速度

静水速度=(顺流速度+逆流速度)÷2

水流速度=(顺流速度-逆流速度)÷2

浓度问题

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷溶液的重量×100%=浓度

溶液的重量×浓度=溶质的重量

溶质的重量÷浓度=溶液的重量

利润与折扣问题

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

涨跌金额=本金×涨跌百分比

折扣=实际售价÷原售价×100%(折扣<1)

利息=本金×利率×时间

税后利息=本金×利率×时间×(1-20%)

长度单位换算

1千米=1000米1米=10分米

1分米=10厘米1米=100厘米

1厘米=10毫米

面积单位换算

1平方千米=100公顷

1公顷=10000平方米

1平方米=100平方分米

1平方分米=100平方厘米

1平方厘米=100平方毫米

体(容)积单位换算

1立方米=1000立方分米

1立方分米=1000立方厘米

1立方分米=1升

1立方厘米=1毫升

1立方米=1000升

重量单位换算

1吨=1000 千克

1千克=1000克

1千克=1公斤

人民币单位换算

1元=10角

1角=10分

1元=100分

时间单位换算

1世纪=100年1年=12月

大月(31天)有:135781012月

小月(30天)的有:46911月

平年 2月28天,闰年 2月29天

平年全年365天,闰年全年366天

1日=24小时1小时=60分

1分=60秒1小时=3600秒

小学数学几何形体周长 面积 体积计算公式

1、 长方形的周长=(长+宽)×2C=(a+b)×2

2、 正方形的周长=边长×4C=4a

3、 长方形的面积=长×宽S=ab

4、 正方形的面积=边长×边长S=a。a= a

5、 三角形的面积=底×高÷2S=ah÷2

6、 平行四边形的面积=底×高S=ah

7、 梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2

8、 直径=半径×2d=2r半径=直径÷2r= d÷2

9、 圆的周长=圆周率×直径=圆周率×半径×2c=πd =2πr

10、圆的面积=圆周率×半径×半径

数学计算公式 4

GMAT的成绩总分为800分,而即使是对美国学生来说,670分都已经算是不错的成绩了。

GMAT成绩的计分过程基本上可以分两步:

1.算出基本分:与GRE专项考试类似,基本分等于正确答案数减去错误答案数的'1/4 例如,某考生在GMAT考试中答对130题,答错20题,空着15题没做,则其基本分为130 - 20 X 1/4=125

2.按下列公式将基本分转化为标准分:标准分=210+ 将该考生的基本分转化为标准分:210+=678.75即近似为679。 所以,该考生的GMAT最后成绩为642分。

请注意:如果计算出的标准分超过800,实际标准分则调整为800分;如果计算出的标准分低于200分,实际标准分则调整为200分。也就是说,最高800,最低200。

以上是GMAT分数计算方式的解读,考生可以据此对自己的实力进行评估,报考理想的学校,希望本文能够对广大考生有所帮助。

数学计算公式 5

数学几何形体周长面积体积计算公式

1、长方形的周长=(长+宽)×2C=(a+b)×2

2、正方形的周长=边长×4C=4a

3、长方形的面积=长×宽S=ab

4、正方形的面积=边长×边长S=a.a=a

5、三角形的`面积=底×高÷2S=ah÷2

6、平行四边形的面积=底×高S=ah

7、梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2

8、直径=半径×2d=2r半径=直径÷2r=d÷2

9、圆的周长=圆周率×直径=圆周率×半径×2c=πd=2πr

10、圆的面积=圆周率×半径×半径

这篇初一数学公式总结:几何形体计算公式就和大家分享到这里了。小编提醒大家:单纯的记忆是不能解决实际问题的,我们必须学会灵活运用所学知识。

常用数学计算公式 6

优质解答1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数

2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数= 1倍数

3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度

4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价

5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间

工作总量÷工作时间=工作效率

6、 加数+加数=和 和-一个加数=另一个加数

7、 被减数-减数=差 被减数-差=减数 差+减数=被减数

8、 因数×因数=积 积÷一个因数=另一个因数

9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数

小学数学图形计算公式

1、正方形:C周长 S面积 a边长 周长=边长×4C=4a 面积=边长×边长S=a×a

2、正方体:V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6

体 积=棱长×棱长×棱长 V=a×a×a

3、长方形:

C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab

4、长方体

V:体积 s:面积 a:长 b: 宽 h:高

(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)

(2)体积=长×宽×高 V=abh

5、三角形

s面积 a底 h高 面积=底×高÷2 s=ah÷2

三角形高=面积 ×2÷底

三角形底=面积 ×2÷高

6、平行四边形:s面积 a底 h高 面积=底×高 s=ah

7、梯形:s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)×h÷2

8 圆形:S面 C周长 ∏ d=直径 r=半径

(1)周长=直径×∏=2×∏×半径 C=∏d=2∏r

(2)面积=半径×半径×∏

9、圆柱体:v体积 h:高 s:底面积 r:底面半径 c:底面周长

(1)侧面积=底面周长×高

(2)表面积=侧面积+底面积×2

(3)体积=底面积×高

(4)体积=侧面积÷2×半径

10、圆锥体:v体积 h高 s底面积 r底面半径 体积=底面积×高÷3

总数÷总份数=平均数

和差问题的公式

(和+差)÷2=大数

(和-差)÷2=小数

和倍问题

和÷(倍数-1)=小数

小数×倍数=大数

(或者 和-小数=大数)

差倍问题

差÷(倍数-1)=小数

小数×倍数=大数

(或 小数+差=大数)

植树问题

1、非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1

全长=株距×(株数-1)

株距=全长÷(株数-1)

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距×(株数+1)

株距=全长÷(株数+1)

2、封闭线路上的植树问题的数量关系如下

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

盈亏问题

(盈+亏)÷两次分配量之差=参加分配的份数

(大盈-小盈)÷两次分配量之差=参加分配的份数

(大亏-小亏)÷两次分配量之差=参加分配的份数

相遇问题

相遇路程=速度和×相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间

追及问题

追及距离=速度差×追及时间

追及时间=追及距离÷速度差

速度差=追及距离÷追及时间

流水问题

顺流速度=静水速度+水流速度

逆流速度=静水速度-水流速度

静水速度=(顺流速度+逆流速度)÷2

水流速度=(顺流速度-逆流速度)÷2

数学计算公式 7

正方形

正方形的周长=边长×4公式:C=4a

正方形的面积=边长×边长公式:S=a×a

正方体的体积=边长×边长×边长公式:V=a×a×a

长方形

长方形的周长=(长+宽)×2公式:C=(a+b)×2

长方形的面积=长×宽公式:S=a×b

长方体的体积=长×宽×高公式:V=a×b×h

三角形

s面积a底h高

面积=底×高÷2

s=ah÷2

三角形高=面积×2÷底

三角形底=面积×2÷高

平行四边形

平行四边形的面积=底×高公式:S=a×h

梯形

s面积a上底b下底h高

面积=(上底+下底)×高÷2

s=(a+b)×h÷2

直径=半径×2公式:d=2r

半径=直径÷2公式:r=d÷2

圆的。周长=圆周率×直径公式:c=πd=2πr

圆的面积=半径×半径×π公式:S=πrr

圆柱体

v:体积h:高s;底面积r:底面半径c:底面周长

(1)侧面积=底面周长×高

(2)表面积=侧面积+底面积×2

(3)体积=底面积×高

(4)体积=侧面积÷2×半径

圆锥体

v:体积h:高s;底面积r:底面半径

体积=底面积×高÷3

总数÷总份数=平均数

数学计算公式 8

1 、正方形:C周长S面积a边长 周长=边长4 C=4a 面积=边长边长 S=aa

2、正方体: V:体积 a:棱长 表面积=棱长棱长6 S表=aa6 体积=棱长棱长棱长 V=aaa

3、长方形: C周长 S面积 a边长 周长=(长+宽)2 C=2(a+b) 面积=长宽 S=ab

4、长方体:V体积s面积 a长 b 宽 h高 (1)表面积(长宽+长高+宽高)2 S=2(ab+ah+bh)2 (2)体积=长宽高 V=abh

5、三角形: s面积a底h高 面积=底高2 s=ah2 三角形高=面积2底 三角形底=面积 2高

6、平行四边形: s面积 a底 h高 面积=底高 s=ah

7、梯形:s面积a上底b下底 h高 面积=(上底+下底)高2 s=(a+b) h2

8、圆形:S面积C周长 d=直径 r=半径 (1)周长=直径=2半径 C=d=2r (2)面积=半径半径 9、圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长高 (2)表面积=侧面积+底面积2 (3)体积=底面积高 (4)体积=侧面积2半径

10、圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积高3

数学计算公式 9

探究目标:

1、组织学生开展测量、计算、估测等数学实践活动,使学生进一步掌握圆柱体积计算公式,并能运用公式正确地计算圆柱的体积。

2、在探索空间与图形的过程中,培养学生初步的空间观念及实践能力,同时结合具体的情境培养其估测意识。

3、使学生学会与他人合作,并能比较清楚地表达和交流解决问题的过程和结果。

4、让学生体验解决策略的多样性,不断激发其对数学的好奇心和求知欲,使其积极地参与数学学习活动。

教学重难点:

学生会应用圆柱体积公式解决实际问题。

探究过程:

一、迁移引入

提问:一个圆柱的底面积是80平方厘米,高是20厘米,求它的体积。

提问:如果已知的是底面半径和高,该怎么求呢?

二、自主探究

1、出示长方体鱼缸。

要计算这个长方体鱼缸能装多少水,就是求什么?

怎样求这个长方体的容积呢?

2、出示圆柱形鱼缸。

⑴估测。这个圆柱形鱼缸的容积大约是多少?

⑵操作、汇报。如果忽略容器的壁厚,这个圆柱形鱼缸的容积到底是多少呢?学生分小组进行操作计算,各小组派代表演示操作过程,并展示计算过程。

学生可能的回答有:

生1:这个圆柱的底面周长是94.5厘米,它的高是12厘米,计算过程如下:①94.5÷3.14÷2≈15.0(厘米)②3.14×152×12=8478(立方厘米)

生2:我们小组测量的是底面直径和高。底面直径长30厘米,高是12厘米,计算过程如下:3.14×(30÷2)2×12=8478(立方厘米)

生3:我们测量的。是底面半径和高。3.14×152×12=8478(立方厘米)

⑷评价。

组织学生间进行评价。你最喜欢哪个小组的操作方案?为什么?每一步列式的意义是什么?使学生进一步掌握圆柱体积的计算方法。

⑸反思。引导学生将实际计算结果与自己的估测结果进行对比。自己矫正偏差。

⑹延伸。如果每立方分米水重1千克,这个鱼缸大约能装水多少千克?

3、自学例题。

组织学生自学课本例5。同桌的两名同学结合例5的解答过程提出相关的数学问题,进行互问互答。

三、巩固练习

做教科书第80页“做一做”中的第2题、练习二十一的第5题。

学生独立完成,指名板演,集体评讲。

四、创意作业

学生综合运用所学的知识,进行计算、绘图、裁剪、粘贴等多项操作活动。

在一张长30厘米,宽20厘米的长方形纸上进行合理的裁剪,做一个无盖的圆柱形笔筒。比一比,谁做的笔筒容积最大?

数学计算公式 10

一、正方形

(C:周长 S:面积 a:边长 )周长=边长4 C=4a 面积=边长边长 S=aa

二、正方体

(V:体积 a:棱长 )

表面积=棱长棱长6 S表=aa6

体积=棱长棱长棱长 V=aaa

三、长方形

( C:周长 S:面积 a:边长 )

周长=(长+宽)2 C=2(a+b)

面积=长宽 S=ab

四、长方体

(V:体积 s:面积 a:长 b: 宽 h:高)

(1)表面积(长宽+长高+宽高)2 S=2(ab+ah+bh)

(2)体积=长宽高 V=abh

五、三角形

(s:面积 a:底 h:高)

面积=底高2 s=ah2

三角形高=面积 2底 三角形底=面积 2高

六、平行四边形

(s:面积 a:底 h:高)

面积=底高 s=ah

七、梯形

(s:面积 a:上底 b:下底 h:高)

面积=(上底+下底)高2 s=(a+b) h2

八、圆形

(S:面积 C:周长 л d=直径 r=半径)

(1)周长=直径л=2л半径 C=лd=2лr

(2)面积=半径半径л

九、圆柱体

(v:体积 h:高 s:底面积 r:底面半径 c:底面周长)

(1)侧面积=底面周长高=ch(2лr或лd) (2)表面积=侧面积+底面积2

(3)体积=底面积高 (4)体积=侧面积2半径

十、圆锥体

(v:体积 h:高 s:底面积 r:底面半径)

体积=底面积高3

十一、总数总份数=平均数

十二、和差问题的公式

(和+差)2=大数 (和-差)2=小数

十三、和倍问题

和(倍数-1)=小数 小数倍数=大数 (或者 和-小数=大数)

十四、差倍问题

差(倍数-1)=小数 小数倍数=大数 (或 小数+差=大数)

十五、相遇问题

相遇路程=速度和相遇时间

相遇时间=相遇路程速度和

速度和=相遇路程相遇时间

十七、利润与折扣问题

利润=售出价-成本

利润率=利润成本100%=(售出价成本-1)100%

涨跌金额=本金涨跌百分比

利息=本金利率时间

税后利息=本金利率时间(1-20%)

数学计算公式 11

“圆柱体积计算公式的推导”是在同学已经学习了“圆的面积计算”、“长方体的体积”、“圆柱的认识”等相关的形体知识的基础上教学的。同时又是为同学今后进一步学习其他形体知识做好充沛准备的一堂课。

课始,教师创设问题情境,不时地引导同学运用已有的生活经验和旧知,探索和解决实际问题,并制造认知抵触,形成了“任务驱动”的探究氛围。

展开局部,教师为同学提供了动手操作、观察以和交流讨论的平台,让同学在体验和探索空间与图形的过程中不时积累几何知识,以协助同学理解实际的三维世界,逐步发展其空间观念。

练习布置注重密切联系生活实际,让同学运用自身刚推导的圆柱体积计算公式解决引入环节中的两个问题,使其认识数学的价值,切实体验到数学存在于自身的'身边,数学对于了解周围世界和解决实际问题是非常有作用的。

教师无论是导入环节,还是新课局部都恰当地引导同学进行知识迁移,充沛地让同学感受和体验“转化”这一解决数学问题重要的思想方法。同时,还合理地运用了多媒体技术,形象生动地展示了“分成的扇形越多,拼成的立体图形就越接近于长方体”,有机地渗透了极限的初步思想。

数学计算公式 12

1 正方形

C周长 S面积 a边长

周长=边长×4

C=4a

面积=边长×边长

S=a×a

2 正方体

V:体积 a:棱长

表面积=棱长×棱长×6

S表=a×a×6

体积=棱长×棱长×棱长

V=a×a×a

3 长方形

C周长 S面积 a边长

周长=(长+宽)×2

C=2(a+b)

面积=长×宽

S=ab

4 长方体

V:体积 s:面积 a:长 b: 宽 h:高

(1)表面积(长×宽+长×高+宽×高)×2

S=2(ab+ah+bh)

(2)体积=长×宽×高

V=abh

5 三角形

s面积 a底 h高

面积=底×高÷2

s=ah÷2

三角形高=面积 ×2÷底

三角形底=面积 ×2÷高

6 平行四边形

s面积 a底 h高

面积=底×高

s=ah

7 梯形

s面积 a上底 b下底 h高

面积=(上底+下底)×高÷2

s=(a+b)× h÷2

8 圆形

S面积 C周长 ∏ d=直径 r=半径

(1)周长=直径×∏=2×∏×半径

C=∏d=2∏r

(2)面积=半径×半径×∏

9 圆柱体

v:体积 h:高 s;底面积 r:底面半径 c:底面周长

(1)侧面积=底面周长×高

(2)表面积=侧面积+底面积×2

(3)体积=底面积×高

(4)体积=侧面积÷2×半径

10 圆锥体

v:体积 h:高 s;底面积 r:底面半径

体积=底面积×高÷3

总数÷总份数=平均数

和差问题的公式

(和+差)÷2=大数

(和-差)÷2=小数

和倍问题

和÷(倍数-1)=小数

小数×倍数=大数

(或者 和-小数=大数)

差倍问题

差÷(倍数-1)=小数

小数×倍数=大数

(或 小数+差=大数)

数学计算公式 13

数量关系计算公式

小学数学数量关系计算公式:

1.单价×数量=总价

2.单产量×数量=总产量

3.速度×时间=路程

4.工效×时间=工作总量

单位换算

(1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米

(2)1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米

(3)1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米

(4)1吨=1000千克1千克=1000克=1公斤=2市斤

(5)1公顷=10000平方米1亩=666.666平方米

(6)1升=1立方分米=1000毫升1毫升=1立方厘米

数学计算公式 14

1正方形C周长S面积a边长

周长=边长×4C=4a

面积=边长×边长S=a×a

2正方体V:体积a:棱长

表面积=棱长×棱长×6S表=a×a×6

体积=棱长×棱长×棱长V=a×a×a

3长方形C周长S面积a边长

周长=(长+宽)×2C=2(a+b)

面积=长×宽S=ab

4长方体V:体积s:面积a:长b:宽h:高

表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)

体积=长×宽×高V=abh

5三角形s面积a底h高

面积=底×高÷2s=ah÷2

三角形高=面积×2÷底三角形底=面积×2÷高

6平行四边形s面积a底h高

面积=底×高s=ah

7梯形s面积a上底b下底h高

面积=(上底+下底)×高÷2s=(a+b)×h÷2

8圆形S面积C周长∏d=直径r=半径

周长=直径×∏=2×∏×半径C=∏d=2∏r

面积=半径×半径×∏

9圆柱体v:体积h:高s;底面积r:底面半径c:底面周长

侧面积=底面周长×高表面积=侧面积+底面积×2

体积=底面积×高体积=侧面积÷2×半径

10圆锥体v:体积h:高s;底面积r:底面半径

体积=底面积×高÷3

这篇图形计算的相关数学知识,是小编精心为同学们准备的,祝大家学习愉快!

一键复制全文保存为WORD
相关文章